大数据之HBase进阶架构原理 完整使用 (第三章)

一、架构原理

1、架构原理

1)HBase详细架构图

在这里插入图片描述

2)StoreFile

保存实际数据的物理文件,StoreFileHFile 的形式存储在 HDFS 上。每个 Store 会有
一个或多个 StoreFileHFile),数据在每个 StoreFile 中都是有序的。

3)MemStore

写缓存,由于 HFile 中的数据要求是有序的,所以数据是先存储在 MemStore 中,排好
序后,等到达刷写时机才会刷写到 HFile,每次刷写都会形成一个新的 HFile

4)WAL

由于数据要经 MemStore 排序后才能刷写到 HFile,但把数据保存在内存中会有很高的概率导致数据
丢失,为了解决这个问题,数据会先写在一个叫做 Write-Ahead logfile 的文件中,然后再写入 
MemStore 中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。

二、写流程

1)HBase 写流程

在这里插入图片描述
写流程:

1)Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server。

2)访问对应的 Region Server,获取 hbase:meta 表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以及 meta
表的位置信息缓存在客户端的 meta cache,方便下次访问。

3)与目标 Region Server 进行通讯;

4)将数据顺序写入(追加)到 WAL;

5)将数据写入对应的 MemStore,数据会在 MemStore 进行排序;

6)向客户端发送 ack;

7)等达到 MemStore 的刷写时机后,将数据刷写到 HFile。

2)、MemStore Flush

HBase 写流程
在这里插入图片描述

写流程:
MemStore 刷写时机:

1.当某个 memstroe 的大小达到了 hbase.hregion.memstore.flush.size(默认值 128M)其所在 region 的所有 memstore 都会刷写。 当 memstore 的大小达到了

hbase.hregion.memstore.flush.size(默认值 128M) *
hbase.hregion.memstore.block.multiplier(默认值 4) 时,
会阻止继续往该 memstore 写数据。

2.当 region server 中 memstore 的总大小达到

java_heapsize

hbase.regionserver.global.memstore.size(默认值 0.4) hbase.regionserver.global.memstore.size.lower.limit(默认值 0.95)
region 会按照其所有 memstore 的大小顺序(由大到小)依次进行刷写。直到 region server 中所有 memstore
的总大小减小到上述值以下。
当 region server 中 memstore 的总大小达到
java_heapsize
hbase.regionserver.global.memstore.size(默认值 0.4)
时,会阻止继续往所有的 memstore 写数据。

  1. 到达自动刷写的时间,也会触发 memstore flush。自动刷新的时间间隔由该属性进行 配置 hbase.regionserver.optionalcacheflushinterval(默认 1 小时)。

4.当 WAL 文件的数量超过 hbase.regionserver.max.logs,region 会按照时间顺序依次进 行刷写,直到 WAL 文件数量减小到 hbase.regionserver.max.log 以下(该属性名已经废弃, 现无需手动设置,最大值为 32)。

3) 读流程

HBase 读流程

在这里插入图片描述
读流程

1)Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server。

2)访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey,查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问。

3)与目标 Region Server 进行通讯;

4)分别在 Block Cache(读缓存),MemStore 和 Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不
同的类型(Put/Delete)。

5) 将从文件中查询到的数据块(Block,HFile 数据存储单元,默认大小为 64KB)缓存到
Block Cache。

6)将合并后的最终结果返回给客户端。

4)StoreFile Compaction

由于memstore每次刷写都会生成一个新的HFile,且同一个字段的不同版本(timestamp)
和不同类型(Put/Delete)有可能会分布在不同的 HFile 中,因此查询时需要遍历所有的 HFile。为了减少 HFile
的个数,以及清理掉过期和删除的数据,会进行 StoreFile Compaction。

Compaction 分为两种,分别是 Minor CompactionMajor Compaction。Minor Compaction会将临近的若干个较小的 HFile 合并成一个较大的 HFile,但不会清理过期和删除的数据。Major Compaction 会将一个 Store 下的所有的 HFile 合并成一个大 HFile,并且会清理掉过期和删除的数据。

StoreFile Compaction
在这里插入图片描述

5) Region Split

默认情况下,每个 Table 起初只有一个 Region,随着数据的不断写入,Region 会自动进
行拆分。刚拆分时,两个子 Region 都位于当前的 Region Server,但处于负载均衡的考虑,
HMaster 有可能会将某个 Region 转移给其他的 Region Server。

Region Split 时机:

1.当1个region中的某个Store下所有StoreFile的总大小超过hbase.hregion.max.filesize, 该 Region 就会进行拆分(0.94 版本之前)。

2.当 1 个 region 中 的 某 个 Store 下所有 StoreFile 的 总 大 小 超 过 **Min(R^2 *
“hbase.hregion.memstore.flush.size”,hbase.hregion.max.filesize"),**该 Region 就会进行拆分,其中 R 为当前 Region Server 中属于该 Table 的个数(0.94 版本之后)。

Region Split

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值