- 博客(1)
- 收藏
- 关注
原创 Cross Entropy Loss(交叉熵)快速理解
监督学习分为两大类:分类问题和回归问题。简单来说,分类问题目标输出的是离散值,回归问题目标输出的是连续值。但是无论是哪种问题,神经网络模型的效果及优化的目标都是通过损失函数来定义的。对于回归问题常用的损失函数有:均方误差(MSE),平均绝对值误差(也称L1损失)等。对于分类问题,常用的损失函数则为交叉熵(Cross Entropy Loss)。我们知道,在神经网络中,softma...
2019-03-15 09:05:17 1226
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人