问题描述:
以前有个孩子,他分分钟都在碎碎念。不过,他的念头之间是有因果关系的。他会在本子里记录每一个念头,并用箭头画出这个念头的来源于之前的哪一个念头。翻开这个本子,你一定会被互相穿梭的箭头给搅晕,现在他希望你用程序计算出这些念头中最长的一条因果链。
将念头从1到n编号,念头i来源于念头from[i],保证from[i]<i,from[i]=0表示该念头没有来源念头,只是脑袋一抽,灵光一现。
输入格式:
第一行一个正整数n表示念头的数量
接下来n行依次给出from[1],from[2],…,from[n]
输出格式:
共一行,一个正整数L表示最长的念头因果链中的念头数量
样例输入:
8
0
1
0
3
2
4
2
4
样例输出:
3
样例说明:
最长的因果链有: 1->2->5 (from[5]=2,from[2]=1,from[1]=0)
1->2->7 (from[7]=2,from[2]=1,from[1]=0)
3->4->6 (from[6]=4,from[4]=3,from[3]=0)
3->4->8 (from[8]=4,from[4]=3,from[3]=0)
数据规模和约定:
字符串长度<=1000
思路解析:
递归:
使用递归的方法,从源头0开始依次寻找下一个念头,没找到一个念头,则数量+1,对于每一条念头链,比较当前念头链的的长度和最大念头链的长度。
动态规划:
建立一个与from数组等长的数组dp,dp[i]表示当前序号能满足构成的最长的长度,dp[i]的值可以由dp[from[i]]+1得到
代码:
递归:
#include <iostream>
#include <string>
#include <cmath>
#include <vector>
#include <iomanip>
#include <sstream>
#include <iomanip>
#include <algorithm>
using namespace std;
int n;
int a[1000];
int maxpath=0;
void digui(int index,int count)
{
int i;
for(i=1;i<=n;i++)
if (a[i]==index)
digui(i,count+1);
if(i==n+1)
maxpath=max(maxpath,count);
}
int main()
{
cin >> n;
for(int i=0;i<n;i++)
cin>>a[i];
digui(0,0);
cout<<maxpath<<endl;
}
动态规划
#include<iostream>
#include<algorithm>
using namespace std;
int from[1001];
int dp[1001];
int main () {
int n, ans = 0;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> from[i];
}
for (int i = 1; i <= n; i++) {
dp[i] = dp[from[i]] + 1;
ans = max(dp[i], ans);
}
cout << ans<<endl;
return 0;
}