本次打卡对应了西瓜书第5章的内容。
西瓜书第5章介绍了神经网络。本章从构成神经网络的最基本组件——神经元开始介绍,并由此引申到由两层神经元组成的感知机,和拥有更多层神经元的多层感知机。在神经网络的训练过程中,大部分情况都会采用反向传播算法,即BP算法,来对参数进行迭代,而反向传播算法正是基于梯度下降法来实现神经网络层级之间的传播的。由于BP神经网络的训练过程是一个参数寻优过程,因此会遇到求解过程中可能会面临局部最小解的问题,本章也对此问题的解决思路进行了简单介绍。此外,本章也介绍了其他几种常见的神经网络,例如RBF网络和玻尔兹曼机。最后,本章简要提及了由复杂的神经网络所组成的深度学习模型。