深度学习实战
文章平均质量分 97
本专栏主要分享各种深度学习的实战项目,主要覆盖领域包括自然语言处理和图神经网络。
斯曦巍峨
这个作者很懒,什么都没留下…
展开
-
基于图卷积神经网络的微博疫情情感分析
关于微博疫情情感分析,博主之前有过给过一套基于循环神经网络的解决方案——疫情微博内容情感分析。今天我们换一个视角,利用图卷积神经网络(Graph Convolutional Network, GCN)来解决该问题。关于数据集的介绍和预处理部分,本实验基本沿用之前的设置,想要了解的可以去看看博主的那篇博客。唯一不同之处在从训练集中划分出20%作为验证集。话不多说,直接上干货!!!原创 2022-09-20 21:41:26 · 3240 阅读 · 9 评论 -
GNN动手实践(三):适用于同配图和异配图的高效图神经网络——H2GCN
H2GCN是NeurIPS 2020上发表的论文《Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs》所提出来的一个同时适用于同配图和异配图的GNN模型。该模型官方也开源了相应的源码(Github),但是是Tensorflow实现的,为此,本文基于Pytorch+PyG来对该模型进行复现。......原创 2022-08-09 10:48:14 · 2712 阅读 · 3 评论 -
GNN动手实践(二):复现图注意力网络GAT
参考论文:Graph Attention NetworksGAT(图注意力网络)是GNNs中重要的SOTA模型,该模型是从空域角度来进行定义,能够用消息传递范式来进行解释。GAT与GCN最大的不同便是它在图节点邻域聚合的过程中引入了注意力机制来计算邻居对当前正在聚合的节点的重要程度。本文的内容包括:图注意力网络的架构介绍、基于PyG来复现GAT模型。...原创 2022-06-29 16:39:07 · 2215 阅读 · 2 评论 -
GNN动手实践(一):手把手带你实现GCN
参考论文:Semi-Supervised Classification with Graph Convolutional Networks一.前言GCN(Graph Convolutional Network)即在图上进行卷积运算,与传统卷积的操作对象不同,GCN的卷积对象图是不规则的,例如每个结点周围的邻居结点数都是不定的。此外,图中各结点间不是互相独立的。图卷积通常需要借助图的结构信息来指导图中的消息聚合。GCN经过多年来的发展有了很多变体,今天要介绍的是Thomas N.Kipf和Max Well原创 2021-08-22 23:25:33 · 9664 阅读 · 11 评论 -
基于CNN中文文本分类实战
一.前言之前写过一篇基于循环神经网络(RNN)的情感分类文章,这次我们换种思路,采用卷积神经网络(CNN)来进行文本分类任务。倘若对CNN如何在文本上进行卷积的可以移步博主的快速入门CNN在NLP中的使用一文。话不多说,直接上干货。二.数据集2.1 数据集介绍本次实验的数据集来源于Github上一个2.4k星的中文NLP开源数据集项目CLUEbenchmark(官方地址),本文选择的是其中的文本分类数据集waimai_10k。该数据集某外卖平台收集的用户评价,正向 4000 条,负向7987条,下面原创 2022-04-25 15:33:15 · 5780 阅读 · 0 评论 -
自己实现一个Pytorch二维卷积
一.前言卷积是卷积神经网络的核心,其主要包括一维卷积、二维卷积和三维卷积,其中二维卷积是应用最广泛的,例如我们常见的图像上的卷积。今天博主就来带大家手撕一下二维卷积计算的实现,注意本文专注于卷积运算的实现,话不多说,请看下文。二.预备知识注:限于篇幅关系,暂不考虑stride和padding。先给个栗子吧,假设存在一张大小为3×4×43 \times 4 \times 43×4×4图像,即图像存在三个通道 (channel),每个channel的宽高都为444,即图1中的3个深蓝色模块。原创 2021-08-08 20:47:04 · 1897 阅读 · 0 评论 -
基于Conv3D和LSTM的出租车流量预测
一.前言今天博主来分享一个车流量预测的深度学习基础实战项目,本次项目采用的数据集为纽约市各区域的历史车流量,输出为对应各区域未来的车流量,话不多说,请看下文!!!二.数据集简介与预处理2.1 数据集简介本实验的数据集为纽约出租车轨迹数据集,数据集中记录了纽约市200个区域(划分得到)从2015年1月1号到2015年3月1号的车流量,记录的时间间隔为30分钟。为方便理解数据集,先放一张类似于该数据集的数据形式的沿时间顺序排列的时间栅格数据图,可知每个时间点纽约市各区域的车流量就是某个时间点的时间栅格。原创 2021-10-02 15:16:13 · 9137 阅读 · 56 评论 -
NLP实战:面向中文电子病历的命名实体识别
一.前言本篇文章是关于NLP中的中文命名实体识别(Named Entity Recognition,NER)的实战项目,该项目利用了大型预训练语言模型BERT和BiLSTM神经网络结构来进行NER任务,文章详细介绍了NER的概念、数据集的预处理、模型的设计与实现。话不多说,直接上干货。二.命名实体识别基础2.1 什么是命名实体识别?命名实体识别旨在抽取非结构化文本中的命名实体(文本中具有特定意义的实体),例如人名、地名、组织名。NER是众多NLP应用的基础,包括知识图谱、信息检索、文本理解等等。说原创 2022-05-10 20:21:17 · 8782 阅读 · 27 评论 -
训练一个AI来写诗
数据集来源:Chinese Poetry Generation with Recurrent Neural Networks一.前言最近碰到一个NLP文本生成的课程任务,索性整理成一篇博客,读完本文你将能够学会使用神经网络模型来写诗,话不多说,请看下文。二.数据集预处理本次实验的数据集来源于EMNLP2014年的一篇论文,其中包含了唐宋元明清各个时代的诗词,其中每种都为一个独立的文件(全不全不清楚)。下面展示的是全宋诗里面的部分内容:volume title author body1_1 句 哀原创 2022-03-26 16:27:49 · 3657 阅读 · 0 评论 -
疫情微博内容情感分析
一.前言最近,碰到一个疫情微博情感分类的任务看到挺有意思的,就试了试手,顺便记录了下整个实验的全过程,话不多说,请看下文。二.数据集简介与预处理2.1 数据集简介数据集为疫情期间在微博收集的,原始数据集的存储格式为TXT,其中存储的是一个py的列表对象,列表中包含的每条元素都为一条微博内容及其对应的标签,这里摘取了训练集中的一条数据来进行直观的展示:{"id": 26, "content": "#全国确诊新型肺炎病例# http://t.cn/RXnNTiO ??福州", "label": "ne原创 2021-08-29 12:59:35 · 11685 阅读 · 68 评论 -
快速入门CNN在NLP中的使用
一.前言对于文本序列,我们一般想到的应用循环神经网络(RNN),事实证明RNN在NLP中确实效果很好。但是RNN也存在一个问题,就是序列前后具有依赖关系,无法并行。而卷积神经网络(CNN)却能克服这个缺陷,且能取得不错的性能。最近博主会更新一波关于CNN在特定NLP任务上的博文,为方便理解,先放出一篇关于文本卷积的博文。二.文本卷积对于图像卷积,我们可能很熟悉,就是利用一个卷积核在图片上从左到右、从上到下进行滑动,然后将卷积核覆盖的元素乘以卷积核对应的元素进行求和。那么对于文本,卷积操作是如何进行原创 2022-04-08 13:41:10 · 2733 阅读 · 0 评论 -
使用NNI,从此告别手动调参
一.前言最近在朋友的介绍下,了解了一个神经网络的调参神器——微软开发的NNI (Neural Network Intelligence),在经过简单尝试之后,发现是真的香。倘若你也苦于每次炼丹都要手动设置超级参数,那你可以选择尝试一下NNI,从此告别繁杂重复的调参参数手动设置。话不多说,直接上干货。二.NNI怎样帮助调参的?对于人工智能从业者,炼丹可谓是一门看家本领,但是通常炼丹是一项十分痛苦的事情。一般来说,我们使用的模型都具有很多的超级参数,那究竟怎样的超级参数组合才能使得模型效果最佳呢?我们往往原创 2022-03-05 00:33:41 · 5388 阅读 · 14 评论