基于邻域粗糙集与灰狼优化算法的特征选择算法

基于邻域粗糙集与灰狼优化算法的特征选择算法

参考论文:

[1]孙林,赵婧,徐久成,王欣雅.基于邻域粗糙集和帝王蝶优化的特征选择算法[J/OL].计算机应用:1-12[2021-12-24].http://kns.cnki.net/kcms/detail/51.1307.TP.20210928.1342.002.html.

[2]王生武,陈红梅. 基于粗糙集和改进鲸鱼优化算法的特征选择方法[J]. 计算机科学,2020(2). DOI:10.11896/jsjkx.181202285.

[3]方波,陈红梅,王生武. 基于粗糙集和果蝇优化算法的特征选择方法[J]. 计算机科学,2019(7). DOI:10.11896/j.issn.1002-137X.2019.07.025.

[4]彭鹏,倪志伟,朱旭辉,等. 基于改进二元萤火虫群优化算法和邻域粗糙集的属性约简方法[J]. 模式识别与人工智能,2020(2). DOI:10.16451/j.cnki.issn1003-6059.202002001.

[5]Li Zou,Hongxin Li,Wei Jiang,Xinhua Yang. An Improved Fish Swarm Algorithm for Neighborhood Rough Set Reduction and its Application.[J]. IEEE Access,2019,7:

[6]张森. 灰狼优化算法及其应用[D].广西民族大学,2017.

[7]Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer

[8]张晓凤,王秀英. 灰狼优化算法研究综述[J]. 计算机科学,2019(3). DOI:10.11896/j.issn.1002-137X.2019.03.004.

[8]Yamany W, Emary E, Hassanien A E. New rough set attribute reduction algorithm based on grey wolf optimization[C]//The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. Springer, Cham, 2016: 241-251.

[9]Moayedikia A, Ong K L, Boo Y L, et al. Feature selection for high dimensional imbalanced class data using harmony search[J]. Engineering Applications of Artificial Intelligence, 2017, 57: 38-49.

[10]Hamed A, Nassar H. Efficient feature selection for inconsistent heterogeneous information systems based on a grey wolf optimizer and rough set theory[J]. Soft Computing, 2021, 25(24): 15115-15130.

算法步骤:

基于邻域粗糙集与灰狼优化算法的特征选择算法
Input:平衡后的数据集NewTrainData,狼群数量M,领导狼数量m,迭代次数Max_iteration
OutPut:最优约简子集
-----------------------------------
1.随机生成01向量,维度为NewTrainData的条件属性个数,个数为m。
├── 1.1 具体操作:
│   └── .随机生成[0,1]范围内的随机数,随机生成一个随机数r,r∈[0,1]
│   └── .判断:当生成的随机数 > r,将其修改为1;
│   └── .     否则,修改为0.
2.根据决策属性划分正类样本和负类样本
3.进入灰狼优化算法,(其中:适应度函数的核心为:依赖度
├── 3.1 初始化步骤:
│   └── 3.1.1 初始化alpha,beta,delta
│   └── 3.1.2 越界处理
│   └── 3.1.3 计算每个个体的适应度
│   └── 3.1.4 更新 Alpha, Beta, and Delta
├── 3.2 迭代步骤:
│   └── 3.2.1 根据灰狼优化算法,进行位置更新
│   └── 3.2.2 在更新位置时,随机产生一个随机数r,r∈[0,1]
│        └── .判断:当生成的随机数 > r,将其修改为1;
│        └── .     否则,修改为0.
结束条件:迭代次数达到最大迭代次数,或者,当适应度值连续5次不变时结束迭代

发现问题:

1.在进行迭代时,收敛过于快,不知道是不是有问题?
2.灰狼优化算法容易陷入局部最优,这一块可以进行优化?
3.大部分数据集得出的约简子集,评价指标都不如没有约简前的好。(应该时有问题了,还没发现

修改之处:

暂无

实验结果:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值