剪绳子
题目描述:
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),
每段绳子的长度记为k[1],...,k[m]。请问k[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,
我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
输入描述:
输入一个数n,意义见题面。(2 <= n <= 60)
输出描述:
输出答案。
示例1
输入
8
输出
18
问题分析:
(我在vscode编辑器运行,两种方法都是正确的,但是提交的时候一直没有东西输出,费解。。。)
说实话,动态规划这种东西我还在体会中,大家看看代码找找思路就好。。。
动态规划的分类
1,最值型动态规划,比如求最大,求最小
2,计数型动态规划,比如换硬币,有多少种换法
3,坐标型动态规划,比如在m*n矩阵求最值型,计数型,一般是二维矩阵
4,区间型动态规划,比如在区间中求最值
代码展示:
暴力递归
function cutRope(number)
{
// 1,暴力递归
if(number == 2)
return 1;
if(number == 3)
return 2;
return back_track(number);
}
//求长度为n的数,最后分段后的最大乘积,不需要关心分成多少段
function back_track(n){
//终止条件,n小于等于4的情况下直接返回该值
//n<=4 表明不分,长度是最大的
if(n<=4)
return n;
let ret = 0;
for (let i=1;i<n;++i){
ret = Math.max(ret,i*back_track(n-i));
}
return ret;
}
动态规划
if(number == 2){
return 1;
}else if(number == 3){
return 2;
}
let f = new Array(number+1);
for(let i=0;i<number+1;i++){
f[i] = -1;
}
for(let i=1;i<=4;++i){
f[i] = i;
}
for(let i=5;i<=number;i++){
for(let j=1;j<i;j++){
f[i] = Math.max(f[i],j*f[i-j]);
}
}
return f[number];