剑指offer-js 剪绳子

剪绳子

题目描述:

给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),
每段绳子的长度记为k[1],...,k[m]。请问k[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,
我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
	
输入描述:
	输入一个数n,意义见题面。(2 <= n <= 60)
输出描述:
	输出答案。
	
示例1
	输入
		8
	输出
		18

问题分析:

(我在vscode编辑器运行,两种方法都是正确的,但是提交的时候一直没有东西输出,费解。。。)
	说实话,动态规划这种东西我还在体会中,大家看看代码找找思路就好。。。

动态规划的分类
1,最值型动态规划,比如求最大,求最小
2,计数型动态规划,比如换硬币,有多少种换法
3,坐标型动态规划,比如在m*n矩阵求最值型,计数型,一般是二维矩阵
4,区间型动态规划,比如在区间中求最值

代码展示:

暴力递归

function cutRope(number)
{
    // 1,暴力递归
    if(number == 2)
        return 1;
    if(number == 3)
        return 2;
    return back_track(number);
}
//求长度为n的数,最后分段后的最大乘积,不需要关心分成多少段
function back_track(n){
     
    //终止条件,n小于等于4的情况下直接返回该值
    //n<=4 表明不分,长度是最大的
    if(n<=4)
        return n;
    let ret = 0;
    for (let i=1;i<n;++i){
        ret = Math.max(ret,i*back_track(n-i));
    }
    return ret;
}

动态规划

    if(number == 2){
        return 1;
    }else if(number == 3){
        return 2;
    }
    let f = new Array(number+1);
    for(let i=0;i<number+1;i++){
        f[i] = -1;
    }
    for(let i=1;i<=4;++i){
        f[i] = i;
    }
    for(let i=5;i<=number;i++){
        for(let j=1;j<i;j++){
            f[i] = Math.max(f[i],j*f[i-j]);
        }
    }
    return f[number];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值