[718. 最长重复子数组]

[718. 最长重复子数组]

给两个整数数组 AB ,返回两个数组中公共的、长度最长的子数组的长度。

示例 1:

输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出: 3
解释: 
长度最长的公共子数组是 [3, 2, 1]。

说明:

  1. 1 <= len(A), len(B) <= 1000
  2. 0 <= A[i], B[i] < 100

思路:动态规划

​ dp[i] [j] 表示以i, j 为结尾的连续公共子数组

那么:

dp[i][j] = A[i] == B[j] ? dp[i+1][j+1]+1 : 0;

public int findLength(int[] A, int[] B) {
        int maxLen = 0;
        int[][] dp = new int[A.length+1][B.length+1];

        for (int i = A.length-1; i >= 0; i--) {
            for (int j = B.length-1; j >= 0; j--) {
                dp[i][j] = A[i] == B[j] ? dp[i+1][j+1]+1 : 0;
                maxLen = Math.max(maxLen, dp[i][j]);
            }
        }

        return maxLen;
    }

思路二 :滑动窗口

分别将AB数组按不同的偏移量对齐即可

public int findLength(int[] A, int[] B) {
        int maxLen = 0;
        //A数组向前移
        for (int i = 0; i < A.length-1; i++) {
            //分别表示AB的指针和他们前一位的最大公共子数组长度
            int ai = i, bi = 0, last = 0;
            while (ai < A.length && bi < B.length){
                last = A[ai++] == B[bi++] ? last+1: 0;
                maxLen = Math.max(maxLen, last );
            }
        }
        //B数组向前移
        for (int i = 0; i < B.length-1; i++) {
            //分别表示AB的指针和他们前一位的最大公共子数组长度
            int ai = 0, bi = i, last = 0;
            while (ai < A.length && bi < B.length){
                last = A[ai++] == B[bi++] ? last+1: 0;
                maxLen = Math.max(maxLen, last );
            }
        }

        return maxLen;
    }

思路三 :二分+hash

如果数组 A 和 B 有一个长度为 k 的公共子数组,那么它们一定有长度为 j <= k 的公共子数组。这样我们可以通过二分查找的方法找到最大的 k。

而为了优化时间复杂度,在二分查找的每一步中,我们可以考虑使用哈希的方法来判断数组 A 和 B 中是否存在相同特定长度的子数组。

注意到序列内元素值小于 100100100 ,我们使用 Rabin-Karp 算法来对序列进行哈希。具体地,我们制定一个素数 base,那么序列 S 的哈希值为:

形象地说,就是把 S 看成一个类似 base 进制的数(左侧为高位,右侧为低位),它的十进制值就是这个它的哈希值。由于这个值一般会非常大,因此会将它对另一个素数 mod 取模。

当我们要在一个序列 S 中算出所有长度为 len 的子序列的哈希值时,我们可以用类似滑动窗口的方法,在线性时间内得到这些子序列的哈希值。例如,如果我们当前得到了 S[0:len] 的哈希值,希望算出 S[1:len+1] 的哈希值时,有下面这个公式:

即删去最高位 S[0],其余位自动进一,并补上最低位 S[len+1]。

在二分查找的每一步中,我们使用哈希表分别存储这两个数组的所有长度为 len 的子数组的哈希值,将它们的哈希值进行比对,如果两序列存在相同的哈希值,则认为两序列存在相同的子数组。为了防止哈希碰撞,我们也可以在发现两个子数组的哈希值相等时,进一步校验它们本身是否确实相同,以确保正确性。但该方法在本题中很难发生哈希碰撞,因此略去进一步校验的部分。

class Solution {
    int mod = 1000000009;
    int base = 113;

    public int findLength(int[] A, int[] B) {
        int left = 1, right = Math.min(A.length, B.length) + 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (check(A, B, mid)) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        return left - 1;
    }

    public boolean check(int[] A, int[] B, int len) {
        long hashA = 0;
        for (int i = 0; i < len; i++) {
            hashA = (hashA * base + A[i]) % mod;
        }
        Set<Long> bucketA = new HashSet<Long>();
        bucketA.add(hashA);
        long mult = qPow(base, len - 1);
        for (int i = len; i < A.length; i++) {
            hashA = ((hashA - A[i - len] * mult % mod + mod) % mod * base + A[i]) % mod;
            bucketA.add(hashA);
        }
        long hashB = 0;
        for (int i = 0; i < len; i++) {
            hashB = (hashB * base + B[i]) % mod;
        }
        if (bucketA.contains(hashB)) {
            return true;
        }
        for (int i = len; i < B.length; i++) {
            hashB = ((hashB - B[i - len] * mult % mod + mod) % mod * base + B[i]) % mod;
            if (bucketA.contains(hashB)) {
                return true;
            }
        }
        return false;
    }
    
    // 使用快速幂计算 x^n % mod 的值
    public long qPow(long x, long n) {
        long ret = 1;
        while (n != 0) {
            if ((n & 1) != 0) {
                ret = ret * x % mod;
            }
            x = x * x % mod;
            n >>= 1;
        }
        return ret;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值