伪随机序列与相关函数---钧桐肤浅而又消瘦的理解

首先,自相关函数和互相关函数的作用

自相关函数就是函数和函数本身的相关性,当函数中有周期性分量的时候
自相关函数的极大值能够很大的体现这种周期性

互相关函数就是两个函数之间的相似性,当两个函数都具有相同周期分量的时候,它的极大值同样能体现这种周期性的分量

自相关和互相关的科普

首先介绍一下协方差函数

期望分别伪E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义:
C o v ( x , y ) = E [ ( x − E [ x ] ) ( y − E [ y ] ) ] Cov(x,y)=E[(x-E[x])(y-E[y])] Cov(x,y)=E[(xE[x])(yE[y])]
C o v ( x , y ) = E [ x y ] − 2 E [ y ] E [ x ] + E [ x ] E [ y ] Cov(x,y) =E[xy]-2E[y]E[x]+E[x]E[y] Cov(x,y)=E[xy]2E[y]E[x]+E[x]E[y]
C o v ( x , y ) = E [ x y ] − E [ x ] E [ y ] Cov(x,y) =E[xy]-E[x]E[y] Cov(x,y)=E[xy]E[x]E[y]

自相关与互相关公式

互相关公式:
在这里插入图片描述
X=Y时,就变成了自相关公式

以Logistic的混沌映射表达式为例

Logistic表达式

X n + 1 X_{n+1} Xn+1= α \alpha α* X n X_n Xn*(1- X n X_n Xn取值范围: X n ∈ ( 0 , 1 ) X_n\in(0,1) Xn(0,1) , α ∈ ( 3.57 , 4 ) \alpha\in(3.57,4) α(3.57,4)
这就是一个最简单的伪随机序列
通过迭代可以产生一些随机的数,但是这些数是和原来的初始值有关的。
也就是说,初始值定下后,这些看似随机的数也就定下来了
那么,这种伪随机序列是可以用来作为密钥来进行数据加密等工作的。

Logistic自相关函数仿真

变量初值
α \alpha α3.99534539857
X 1 X_1 X10.35346481534686

由图可以看出函数的自相关性很好
在这里插入图片描述

Logistic互相关函数仿真

变量初值
α \alpha α3.99534539857
X 1 X_1 X10.35346481534686
X 1 ‘ X_1‘ X10.35346481534685

我们可以看出,初始值一个微小的变化就使得两个函数的互相关性很差,真的很伪随机哦,很适合当密码
在这里插入图片描述

有关Logistic的收敛性推导

在这里插入图片描述

工程数学中牛顿迭代法(随便复习一哈)

在这里插入图片描述

我签过保密协议,不能给大家分享代码了,哈哈!

没有啦!!!分享了之后,我怕别人发论文抢先一步,让我无法毕业。。。
其实代码也很简单,一个xcorr函数就搞定了

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值