描述
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。如下图所示
数据范围:输入二叉树的节点数 0 \le n \le 10000≤n≤1000,二叉树中每个节点的值 0\le val \le 10000≤val≤1000
要求:空间复杂度O(1)O(1)(即在原树上操作),时间复杂度 O(n)O(n)
注意:
- 1.要求不能创建任何新的结点,只能调整树中结点指针的指向。当转化完成以后,树中节点的左指针需要指向前驱,树中节点的右指针需要指向后继
- 2.返回链表中的第一个节点的指针
- 3.函数返回的TreeNode,有左右指针,其实可以看成一个双向链表的数据结构
- 4.你不用输出双向链表,程序会根据你的返回值自动打印输出
输入描述
二叉树的根节点
返回值描述
双向链表的其中一个头节点。
示例1
输入:
{10,6,14,4,8,12,16}
返回值:
From left to right are:4,6,8,10,12,14,16;From right to left are:16,14,12,10,8,6,4;
说明:
输入题面图中二叉树,输出的时候将双向链表的头节点返回即可。
示例2
输入:
{5,4,#,3,#,2,#,1}
返回值:
From left to right are:1,2,3,4,5;From right to left are:5,4,3,2,1;
说明:
5
/
4
/
3
/
2
/
1
树的形状如上图
代码
1.确定头结点:最左边的叶子结点。
2.新建一个head指向头结点
3.记录上一结点pre和当前结点cur
4.遍历时不断更新:
- pre.right = cur;
- cur.left = pre;
5.遍历的递归步骤: - 确定递归结束的条件(cur === null)
- 递归左子树
- 处理当前结点
- 递归右子树
/* function TreeNode(x) {
this.val = x;
this.left = null;
this.right = null;
} */
function Convert(pRootOfTree)
{
// write code here
let head=null
let pre=null
function dfs(cur){
if(cur===null) return
dfs(cur.left)
if(pre===null){
head=cur
}else{
pre.right=cur
}
cur.left=pre
pre=cur
dfs(cur.right)
}
dfs(pRootOfTree)
return head
}
module.exports = {
Convert : Convert
};