- 博客(10)
- 收藏
- 关注
原创 C++ 使用Doxygen 生产UML类图
之后会在工程目录下生成一个html文件夹和 latex文件夹。可以直接打开html文件下的index.htm浏览查看整个工程下的UML类图。根据config文件生成文档,这一步如果项目较大时间会比较久。编辑config文件,建议修改以下内容。进入工程目录,生成config文件。
2023-04-10 15:51:41 2014
原创 conda install mingw libpython出错
在安装Theano和pymc3的时候,需要先安装mingw和libpython。按照知乎大佬的步骤链接在conda install mingw libpython的时候会出现报错PackagesNotFoundError: The following packages are not available from current channels: - mingw进入anaconda的网站,搜索mingw,找到对应的库然后使用命令,成功安装!conda install -c free m
2021-12-28 16:56:56 3277 4
原创 数据离散化:等频分箱Python
在一些算法中,需要将具有连续属性的特征转换成离散属性的特征。离散化后的特征对于异常数据会有更强的鲁棒性,模型会更加的稳定。在建立分类模型时,例如:逻辑回归的算法,对数据进行预先的离散化,可以十分有效地提高模型的结果。在这里我主要记录并介绍我最近自己使用的等频分箱的代码。等频离散化等频离散化顾名思义,使划分的区间中,样本数量尽量保持一致。例如对数据【2,2,3,4,8,10,12,16,17】。我们使用等频分箱,设置分箱数为3,一共分成三个区间。那么等频分箱的结果将会是:【2,2,3】【4,8,1
2020-07-25 16:38:01 16496
原创 HDU 4193(单调队列)
HDU 4193(单调队列)问题描述You are given a sequence of n numbers a0,…, an-1. A cyclic shift by k positions (0<=k<=n-1) results in the following sequence: ak ak+1,…, an-1, a0, a1,…, ak-1. How many of the n cyclic shifts satisfy the condition that the sum of
2020-07-25 15:23:54 202
原创 迷宫问题
简单搜索 迷宫问题问题描述定义一个二维数组:int maze[5][5] = {0, 1, 0, 0, 0,0, 1, 0, 1, 0,0, 0, 0, 0, 0,0, 1, 1, 1, 0,0, 0, 0, 1, 0,};它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。Input一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。Output左上角到右下角的最短路径,格式如样例所示。
2020-07-11 20:51:47 163
原创 Fire!
简单搜索 J题 Fire!问题描述迷宫里起火了,Joe被困在迷宫里,火势会一直蔓延。Joe每分钟可以向上下左右四个方向移动一格,火每分钟可以将上下左右四个方向同时点燃。我们需要模拟出Joe是否可以逃出迷宫,以及逃出迷宫的时间。输入Joe以及火的初始位置由输入给出.迷宫中#表示墙,J代表Joe, F代表火。输出Joe逃出的时间 或者 IMPOSSIBLE思路这里面Joe的初始位置是唯一的,但是火的初始位置可以是多个。火的初始位置确定下来之后,每分钟过后火的位置都是确定的。把火当做是墙,可以相当
2020-07-10 21:12:15 345 2
原创 快速判断素数的方法
做OJ的时候碰到了一个判断素数的方法,考虑到素数使用传统暴力方法比较耗时间,所以参考了以下这篇文章,做了个笔记。https://www.cnblogs.com/IceHowe/p/11186862.html。常规方法素数的定义是大于1的自然数中,除了自己本身和1之外,没有其他的因数的数叫做素数或者质数。因此常规方法就是将2~N-1的数同时与N相除,如果余数为0,则不是素数。若所有余数都是非0的,那么就是素数。代码我这里就省略了。更有效的方法定理1:大于5的素数,一定分布在6的倍数左右。例如 5、
2020-07-10 16:30:19 1575
转载 dataframe 异常值处理
箱体处理异常值import pandas as pdimport numpy as npfrom collections import Counterdef detect_outliers(df,n,features): print("开始处理异常值") outlier_indices = [] for col in features: Q1 = np.percentile(df[col], 25) Q3 = np.percentile(df
2020-05-28 21:10:01 2648
转载 Python DataFrame操作
转载自https://www.cnblogs.com/qq903420458/p/10012060.html1)查看DataFrame数据及属性df_obj = DataFrame() #创建DataFrame对象df_obj.dtypes #查看各行的数据格式df_obj[‘列名’].astype(int)#转换某列的数据类型df_obj.head() #查看前几行的数据,默认前5行...
2020-04-17 12:12:15 464
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人