数论 (一) ”质数“ 那点事

目录

 质数判定

 质数筛选

Eratosthenes算法 (不会读 233~~) 埃氏筛法

从2到n循环,筛去每个质数的整数倍的那些合数(循环到 i 没被筛去,则 i 一定是质数)

对每个质数x从它的x倍开始标记,值不超过N

线性筛法

一次循环筛去小于等于p1的素数乘以m得到的数

质因数分解

试除法+埃氏筛法

从2到,只要n中有这个质因子,就除尽(其中的合数被前面的质数判掉了)


 先来热热身

  1. 质数只有1和本身两个质因子
  2. 任何一个数可以拆分成几个质数的乘积  n=q1^a*q2^b*q3^c...

 质数判定

若整数N为合数,则存在一个能整除 N 的 T (2<=T <= \sqrt{N}

上代码

#include<iostream> 
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
using namespace std; 
int n;
bool is_prime(int n)
{
    for(int i=2;i<=sqrt(n);i++)   
    if(n%i==0)  return false;
    if(n==1 || n==0) return false;
    return true;
}

 质数筛选

给定一整数N,求出1到N的所有质数

Eratosthenes算法 (不会读 233~~) 埃氏筛法

  • 基本思想
  1. 任何质数的整数倍都是合数  
  2. 质数n ,整数2<=i<n  ,n % i ! = 0 ,n必为质数

从2到n循环,筛去每个质数的整数倍的那些合数(循环到 i 没被筛去,则 i 一定是质数)

  • 优化    
  1. 小于x^{2}的x的整数倍之前被筛过了 

对每个质数x从它的x倍开始标记,值不超过N

上代码

#include<iostream> 
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
using namespace std; 
int n;//1000
int v[1005]={0};
void primes(int n)
{
    memset(v,0,sizeof(v));//质数为0 合数为1
    v[1]=1,v[0]=1;
    for(int i=2;i<=n;i++)
    {
        if(v[i]==0)
        {
            cout<<i<<' ';
            for(int j=i;j*i<=n;j++)  v[i*j]=1;
        }   
    }
}
int main()
{
    cin>>n;
    primes(n);
}

 

  • 缺点:存在重复筛选 
  • 原因:任意一个整数可以写成一些素数的乘积 n=p1^a * p2^b * p3^c,其中p1<p2<p3,这样这个数n就能被p1,p2和p3筛掉
  • 解决方法:按照一个数的最小素因子筛去(也就是这里的p1)就可以啦,这也就有了线性筛素数

线性筛法

  • 基本思想:用合数的最小质因子筛去这个合数,就不会重复筛去这个数

实现:当前数字是m=p1^a * p2^b * p3^c(p1<p2<p3且均为素数),p1之前有pi,pj和pk三个素数。

      pi*m,pj*m,pk*m, p1*m 最小质因子  分别为pi , pj , pk , p1 ,本次循环即可筛去。

一次循环筛去小于等于p1的素数乘以m得到的数

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
int n;
int p[10000000]={0},num=0;
int minp[10000000]={0};

void prime(int n)
{
	for(int i=2;i<=n;i++)
	{
		if(minp[i]==0)  p[++num]=i,minp[i]=i;
		for(int j=1;p[j]*i<=n;j++)
		{
		    minp[i*p[j]]=p[j];
			if(p[j]==minp[i]) break;
		}
	}
}


int main()
{
	scanf("%d",&n);
	prime(n);
	for(int i=1;i<=num;i++)  cout<<p[i]<<' ';
	return 0;
}

 

 简化的新版 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
int n;
int p[100000]={0},num=0;
int b[100000]={0};//0 质数
void prime(int n)
{
	memset(b,0,sizeof(b)); b[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(b[i]==0)  p[++num]=i;
		for(int j=1;p[j]*i<=n;j++)
		{
			//if(j>num)  break;  不需要啦
			b[i*p[j]]=1;
			if(i%p[j]==0)  break;
		}
	}
}

int main()
{
	scanf("%d",&n);
	prime(n);
	for(int i=1;i<=num;i++)  cout<<p[i]<<' ';
	return 0;
}

 //if(j>num)  break;  不需要啦  

因为一个数的最小质因子一定在线面被找到啦   //  额 打完觉得自己说了句废话

if(i%p[j]==0)  break;

优化的核心  一个数的最小质因子 一定能在质数循环中被找到

但其实时间空间都不变 而且 还少得到了一个数的最小质因子的信息 , 表示不知道到为什么叫优化啦  qwq

可能判断条件简单吧

 

线性线性 时间O(n)

质因数分解

试除法+埃氏筛法

从2到,只要n中有这个质因子,就除尽(其中的合数被前面的质数判掉了)

#include<iostream> 
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
using namespace std; 
int n;
int p[1000005]={0};
int c[1000]={0};
void divide(int n)
{
    cout<<n<<'=';
	int m=0;
	for(int i=2;i<=sqrt(n);i++)
	{
		if(n%i==0)//i为合数时,一定被前面的其质因子判掉了 
		{
			p[++m]=i;
			while(n%i==0) n=n/i,c[m]++;
		}
	}
	if(n>1) p[++m]=n,c[m]=1;//所有合数都被除尽变成0了
	
	for(int i=1;i<m;i++)  cout<<p[i]<<'^'<<c[i]<<'*';
	cout<<p[m]<<'^'<<c[m];
} 
int main()
{
    cin>>n;
    divide(n);
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值