LeetCode-螺旋矩阵 II-模拟过程-py
题目回顾
给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3
输出:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
题解
同螺旋矩阵一类似,参考题解,方法一模拟过程
时间复杂度是 O ( n 2 ) O(n^2) O(n2),
空间复杂度 O ( n 2 ) O(n^2) O(n2),
执行用时: 48 m s 48 ms 48ms
模拟
分为四个遍历过程,
- 从左到右遍历首行的所有元素,并更新当前首行
- 从上到下遍历最右列所有元素,并更新当前最右列
- 从右向左遍历尾行的所有元素,并更新当前尾行
- 从下到上遍历最左列所有元素,并更新当前最左列
举例:
1 1 1 1 1
4 5 5 5 2
4 7 7 6 2
3 3 3 3 2
与之前螺旋矩阵原理类似,不同的地方,需要重新初始化一个矩阵,并且有个计数的count。
python代码实现
class Solution(object):
def spiralOrder(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[int]
"""
matrix=[]
for i in range(n):
matrix.append([0 for i in range(n)])
head_row=0
rail_row=len(matrix)-1 #当前尾部的行数索引
l_col=0
r_col=len(matrix[0])-1 #当前最右边的列数索引
count=1
while head_row<=rail_row and l_col<=r_col:
for i in range(l_col,r_col+1): #1.从左到右遍历首行的所有元素
matrix[head_row][i]=count
count=count+1
head_row=head_row+1 #更新当前首行
if head_row>rail_row:
break
for i in range(head_row,rail_row+1): #2.从上到下遍历最右列所有元素
matrix[i][r_col]=count
count=count+1
r_col=r_col-1 #更新当前最右列
if r_col<l_col:
break
for i in range(r_col,l_col-1,-1): #3.从右向左遍历尾行所有元素
matrix[rail_row][i]=count
count=count+1
rail_row=rail_row-1 #更新当前尾行
for i in range(rail_row,head_row-1,-1): #4.从下到上遍历最左列所有元素
matrix[i][l_col]=count
count=count+1
l_col=l_col+1 #更新当前最左列
return matrix