题目回顾
给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素。
说明:
你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数。
示例 1:
输入: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
输出: 1
示例 2:
输入: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
输出: 3
- 进阶:
如果二叉搜索树经常被修改(插入/删除操作)并且你需要频繁地查找第 k 小的值,你将如何优化kthSmallest
函数?
题解
参考题解
时间复杂度: 快排 O ( N ) O(N) O(N),
空间复杂度 O ( N ) O(N) O(N),
执行用时: 24 m s 24 ms 24ms
中序遍历
中序遍历求解,使用栈进行辅助存储左节点或父节点
cpp
#include<iostream>
#include<vector>
#include<stack>
using namespace std;
// Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
vector<int> res;
TreeNode *p=root;
stack<TreeNode*> sta;
while(p || !sta.empty()){
while(p) { //将左节点的都推入,或者是上一轮右节点
sta.push(p);
p=p->left;
}
if(!sta.empty()){
p=sta.top();
sta.pop();
res.push_back(p->val);
p=p->right; //遍历节点,在下一循环压入栈
}
}
return res[k-1];
}
};
int main(){
Solution sol=Solution();
TreeNode* node=new TreeNode(5);
node->left=new TreeNode(3);
node->right=new TreeNode(6);
node->left->left=new TreeNode(2);
node->left->right=new TreeNode(4);
node->left->left->left=new TreeNode(1);
//result repect is : 3
cout<<sol.kthSmallest(node,3);
return 0;
}