Cooperative Co-evolution for Large Scale Optimization Through More frequent Random Grouping

0、论文背景

本文是在MLCC的基础上改进而来的,提出了DECC_ML。本文证明了使用随机分组在一个子组件中分组交互变量的概率随着交互变量数量(每个子空间包含的变量维度)的增加而显著下降。这就要求更频繁地进行变量的随机分组。本文展示了如何增加随机分组的频率,而不增加适应度评估的数量。本文还表明,自适应加权是无效的,通过对目标函数的额外评估浪费了大量的CPU时间。最后,本文提出了一种新的动态调整分组大小的自适应技术

Omidvar M N, Li X, Yang Z, et al. Cooperative co-evolution for large scale optimization through more frequent random grouping[C]//IEEE Congress on Evolutionary Computation. IEEE, 2010: 1-8.

1、更加频繁的随机分解

给定 N 个循环,将 v 个相互作用的变量 x_{1},x_{2},...,x_{v} 分配为一个子分量的概率为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

身影王座

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值