0、论文背景
本文是在MLCC的基础上改进而来的,提出了DECC_ML。本文证明了使用随机分组在一个子组件中分组交互变量的概率随着交互变量数量(每个子空间包含的变量维度)的增加而显著下降。这就要求更频繁地进行变量的随机分组。本文展示了如何增加随机分组的频率,而不增加适应度评估的数量。本文还表明,自适应加权是无效的,通过对目标函数的额外评估浪费了大量的CPU时间。最后,本文提出了一种新的动态调整分组大小的自适应技术。
Omidvar M N, Li X, Yang Z, et al. Cooperative co-evolution for large scale optimization through more frequent random grouping[C]//IEEE Congress on Evolutionary Computation. IEEE, 2010: 1-8.
1、更加频繁的随机分解
给定 N 个循环,将 v 个相互作用的变量 分配为一个子分量的概率为: