0、论文背景
本文在CC框架的基础上,提出了一个新的CC框架CCVIL,放弃了均匀的随机变量分组策略。该框架最初将所有变量视为独立的,并将每个变量放入一个单独的组中。迭代地,它发现它们之间的关系,并相应地合并这些组。
Chen W, Weise T, Yang Z, et al. Large-scale global optimization using cooperative coevolution with variable interaction learning[C]//International conference on parallel problem solving from nature. Springer, Berlin, Heidelberg, 2010: 300-309.
1、 CC
传统CC框架参见博客:CC。以下是简单的CC算法的流程,它将问题视为完全可分离的。