- 博客(3)
- 收藏
- 关注
原创 深度学习——L1及L2范数
在深度学习中,监督类学习问题其实就是在规则化参数同时最小化误差。最小化误差目的是让模型拟合训练数据,而规则化参数的目的是防止模型过分拟合训练数据。参数太多,会导致模型复杂度上升,容易过拟合,也就是训练误差小,测试误差大。因此,我们需要保证模型足够简单,并在此基础上训练误差小,这样训练得到的参数才能保证测试误差也小,而模型简单就是通过规则函数来实现的。L1范数和L2范数的差别一个是绝...
2019-05-23 11:36:19 2986
原创 集成学习详解
Ensemble Learning: Bagging, Boosting, Stacking集成学习的条件:通过集成学习提高分类器的整体泛化能力,基分类器之间必须要有差异。如果使用的是同一个分类器集成,那么该集成分类器的性能不会有提升 每个基分类器的分类精度必须大于0.5。如图所示,如果基分类器精度小于0.5时,随着集成规模增加,分类集成分类器的分类精度会下降;如果基分类器的精度大于0....
2019-05-23 10:52:18 526 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人