自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 深度学习——L1及L2范数

在深度学习中,监督类学习问题其实就是在规则化参数同时最小化误差。最小化误差目的是让模型拟合训练数据,而规则化参数的目的是防止模型过分拟合训练数据。参数太多,会导致模型复杂度上升,容易过拟合,也就是训练误差小,测试误差大。因此,我们需要保证模型足够简单,并在此基础上训练误差小,这样训练得到的参数才能保证测试误差也小,而模型简单就是通过规则函数来实现的。L1范数和L2范数的差别一个是绝...

2019-05-23 11:36:19 2986

原创 集成学习详解

Ensemble Learning: Bagging, Boosting, Stacking集成学习的条件:通过集成学习提高分类器的整体泛化能力,基分类器之间必须要有差异。如果使用的是同一个分类器集成,那么该集成分类器的性能不会有提升 每个基分类器的分类精度必须大于0.5。如图所示,如果基分类器精度小于0.5时,随着集成规模增加,分类集成分类器的分类精度会下降;如果基分类器的精度大于0....

2019-05-23 10:52:18 526 1

原创 python手动实现二维卷积

2019-05-23 10:07:06 4085 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除