54. 螺旋矩阵 59. 螺旋矩阵 II

原题链接:54. 螺旋矩阵

                59. 螺旋矩阵 II 

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        vector<int> res;    //定义返回值
        int n = matrix.size();
        int m = matrix[0].size();
        if(n == 0) return res;

        int dx[4] = {0,1,0,-1},dy[4] = {1,0,-1,0};  //定义遍历的四个方向
        bool sta[n][m]; //标记是否被遍历过
        memset(sta, false, sizeof(sta));

        for(int i = 0,x = 0,y = 0,d = 0;i < n * m;i++){
            res.push_back(matrix[x][y]);
            sta[x][y] = true;
            
            int a = x + dx[d],b = y + dy[d];
            if(a < 0 || a == n || b < 0 || b == m || sta[a][b]){
                d = (d + 1) % 4;
                a = x + dx[d],b = y + dy[d];
            }
            x = a,y = b;
        }

        return res;
    }
};

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> matrix(n,vector<int>(n, 0));    //定义返回值
        bool sta[n][n];
        memset(sta, false, sizeof(sta));
        int dx[4] = {0,1,0,-1},dy[4] = {1,0,-1,0};

        for(int i = 1,x = 0,y = 0,d = 0;i <= n * n; i++){
            matrix[x][y] = i;
            sta[x][y] = true;

            int a = x + dx[d],b = y + dy[d];
            if(a < 0 || a == n || b < 0 || b == n || sta[a][b]){
                d = (d + 1) % 4;
                a = x + dx[d],b = y + dy[d];
            }
            x = a,y = b;
        }
        return matrix;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值