下山 | ||||||
| ||||||
Description | ||||||
下面的矩阵可以想象成鸟瞰一座山,矩阵内的数据可以想象成山的高度。 可以从任意一点开始下山。每一步的都可以朝“上下左右”4个方向行走,前提是下一步所在的点比当前所在点的数值小。 例如处在18这个点上,可以向上、向左移动,而不能向右、向下移动。 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9 问题是,对于这种的矩阵,请计算出最长的下山路径。 对于上面所给出的矩阵,最长路径为25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1,应输出结果25。 | ||||||
Input | ||||||
输入包括多组测试用例。 对于每个用例,第一行包含两个正整数R和C分别代表矩阵的行数和列数。(1 <= R,C <= 100) 从第二行开始是一个R行C列矩阵,每点的数值在[0,10000]内。 | ||||||
Output | ||||||
输出最长的下山路径的长度。 | ||||||
Sample Input | ||||||
5 5 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9 | ||||||
Sample Output | ||||||
25 | ||||||
Hint | ||||||
深度优先搜索 | ||||||
Author | ||||||
卢俊达 |
思路:深度优先搜索
注意:每一个数都要进行深度优先搜索
题解:
#include<bits/stdc++.h>
using namespace std;
#define M(a,b) memset(a,b,sizeof(a))
const int MAXN=105;
int n,m;
int vis[MAXN][MAXN];
int MAP[MAXN][MAXN];
int MAX;
int X[5]= {0,0,0,1,-1};
int Y[5]= {0,1,-1,0,0};
int dfs(int x,int y)
{
if(vis[x][y])///如果被访问过了,就返回上一层
return vis[x][y];
vis[x][y]=1;
for(int i=1; i<=4; i++)
{
int xx=x+X[i];
int yy=y+Y[i];
if(xx>=1&&xx<=n&&yy>=1&&yy<=m&&MAP[xx][yy]<MAP[x][y])
vis[x][y]=max(dfs(xx,yy)+1,vis[x][y]);///用vis数组记录此时的最大值
}
return vis[x][y];
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
M(vis,0);
for(int i=1; i<=n; i++)
for(int j=1;j<=m; j++)
scanf("%d",&MAP[i][j]);
MAX=0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
MAX=max(dfs(i,j),MAX);///对每一个数都进行深度搜索,比较找出最长的路径
}
}
printf("%d\n",MAX);
}
}