求输入A和B的最小公倍数

求最大公约数有两种方法: 更相减损法和辗转相处法 。最小公倍数在求出最大公约数后 两个数相乘除以最大公约数就是最小公倍数。


更相减损法

更相减损法是拿两个数中的较大值减去较小值,然后在减数、被减数、差之间选取两个较小值继续相减,直到减数和被减数相等,得出的数就是最大公约数。

 

辗转相除法

用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。

 

 

题目描述

正整数A和正整数B 的最小公倍数是指 能被A和B整除的最小的正整数值,设计一个算法,求输入A和B的最小公倍数。

输入描述:

输入两个正整数A和B。

输出描述:

输出A和B的最小公倍数。

示例1

输入

5 7

输出

35

 

C++实现

 

1. 辗转相除法

#include<iostream>
using namespace std;

int maxyue(int a, int b)
{
	while (a%b)
	{
		int temp = a;
		a = b; 
		b = temp%b;
	}
	return b;
}

int main()
{
	int a, b;	
	while (cin>>a>>b)
	{
		int yue;
		if (a>b)
		{
			yue=maxyue(a, b);
		}
		else
		{
			yue=maxyue(b, a);
		}
		cout << a * b / yue << endl;
	}
	return 0;
}

2.更相减损法

#include<iostream>
using namespace std;

int maxyue(int a, int b)
{
	int temp = a - b;
	while (temp!=b)
	{
		if (temp>b)
		{
			a = temp;
			b = b;
		}
		else
		{
			a = b;
			b = temp;
		}
		temp = a - b;
	}
	return b;
}

int main()
{
	int a, b;	
	while (cin>>a>>b)
	{
		int yue;
		if (a>b)
		{
			yue=maxyue(a, b);
		}
		else
		{
			yue=maxyue(b, a);
		}
		cout << a * b / yue << endl;
	}
	return 0;
}

JAVA实现

1. 辗转相除法

import java.util.Scanner;
 
public class Main 
{
	static int maxyue(int a,int b)
	{
		while (a%b!=0)
		{
			int temp = a;
			a = b; 
			b = temp%b;
		}
		return b;
	}
    public static void main(String[] args) 
    {
        Scanner scanner = new Scanner(System.in);
        int a=scanner.nextInt();
    	int b=scanner.nextInt();
    	int yue;
    	if (a>b)
		{
			yue=maxyue(a, b);
		}
		else
		{
			yue=maxyue(b, a);
		}  
    	int bei=a*b/yue;
    	System.out.println(bei);    
    }            
}

2.更相减损法

import java.util.Scanner;
 
public class Main 
{
	static int maxyue(int a,int b)
	{
		int temp = a - b;
		while (temp!=b)
		{
			if (temp>b)
			{
				a = temp;
			}
			else
			{
				a = b;
				b = temp;
			}
			temp = a - b;
		}
		return b;
	}
    public static void main(String[] args) 
    {
        Scanner scanner = new Scanner(System.in);
        int a=scanner.nextInt();
    	int b=scanner.nextInt();
    	int yue;
    	if (a>b)
		{
			yue=maxyue(a, b);
		}
		else
		{
			yue=maxyue(b, a);
		}  
    	int bei=a*b/yue;
    	System.out.println(bei);    
    }            
}

Python实现

1. 辗转相除法

def maxyue(a, b):
    while (a%b):
        temp=a
        a=b
        b=temp%b
    return b


a,b=map(int,input().split())
if (a>b):
    yue=maxyue(a, b)
else:
    yue=maxyue(b, a)
print( int(a * b / yue))

2.更相减损法

def maxyue(a, b):
    temp = a - b
    while (temp!=b):
        if (temp>b):
            a = temp
        else:
            a = b
            b = temp
        temp = a - b
    return b


a,b=map(int,input().split())
if (a>b):
    yue=maxyue(a, b)
else:
    yue=maxyue(b, a)
print( int(a * b / yue))

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值