import os
from turtle import forward
import cv2
import torch
# 定义一个网络
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
# super相当于是指向当前对象的父类,这样就可以用super.xxx来引用父类的成员。
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
# 在模型中必须要定义 forward 函数,backward 函数(用来计算梯度)会被autograd自动创建。 可以在 forward 函数中使用任何针对 Tensor 的操作。
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(self.conv2(x), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
print('*******', num_features)
for s in size:
num_features *= s
print('---', s, num_features)
return num_features
if __name__ == "__main__":
# autograd包为张量上的所有操作提供了自动求导。 它是一个在运行时定义的框架,意味着反向传播是根据你的代码来确定如何运行,并且每次迭代可以是不同的。
"""
torch.Tensor是这个包的核心类。如果设置 .requires_grad 为 True,那么将会追踪所有对于该张量的操作。 当完成计算后通过调用 .backward(),自动计算所有的梯度, 这个张量的所有梯度将会自动积累到 .grad 属性。
要阻止张量跟踪历史记录,可以调用.detach()方法将其与计算历史记录分离,并禁止跟踪它将来的计算记录。
为了防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad():中。 在评估模型时特别有用,因为模型可能具有requires_grad = True的可训练参数,但是我们不需要梯度计算。
"""
# 反向传播时
# 一个纯量(scalar),out.backward() 等于out.backward(torch.tensor(1))
# 否则需要指定tensor作为参数传入backward
x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
gradients = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(gradients)
print(x.grad)
"""
Neural Networks
"""
net = Net()
print(net)
# net.parameters()返回可被学习的参数(权重)列表和值
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
"""
损失函数
"""
output = net(input)
target = torch.randn(10) # 随机值作为样例
target = target.view(1, -1) # 使target和output的shape相同
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
"""
反向传播
"""
# 将所有参数的梯度缓存清零,然后进行随机梯度的的反向传播
net.zero_grad()
out.backward(torch.randn(1, 10))
"""
更新权重
"""
# 当使用神经网络是想要使用各种不同的更新规则时,比如SGD、Nesterov-SGD、Adam、RMSPROP等,PyTorch中构建了一个包torch.optim实现了所有的这些规则。
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
pytorch基础:autograd, 模型定义
最新推荐文章于 2024-11-10 10:54:30 发布