自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 收藏
  • 关注

原创 YOLOV5/YOLOV7/YOLOV8改进专栏

手把手教你YOLOV5/YOLOV7/YOLOV8的各种改进方式,订阅可以直接给改进好的源代码。

2023-07-04 10:40:25 1458 4

原创 Pointnet++改进即插即用系列:全网首发iRMB反向残差移动块 |即插即用,提升特征提取模块性能

本文的重点是在权衡参数、FLOPs和性能的同时,为密集预测开发现代、高效、轻量级的模型。倒立残差块(IRB)是轻量级cnn的基础结构,但在基于注意力的研究中还没有相应的基础结构。本文从高效IRB和Transformer的有效组件的统一角度重新思考轻量级基础架构,将基于cnn的IRB扩展到基于注意力的模型,并抽象出一个用于轻量级模型设计的单残留元移动块(MMB)。根据简单而有效的设计准则,我们推导出了一种现代的反向残差移动块(iRMB),并构建了一个只有iRMB的类resnet高效模型(EMO)用于下游任务。

2024-04-10 11:26:53 170

原创 Pointnet++改进卷积系列:全网首发DualConv轻量级深度神经网络的双卷积核 |即插即用,提升特征提取模块性能

我们提出了双卷积核(DualConv)来构建轻量级深度神经网络。DualConv结合3 × 3和1 × 1卷积核同时处理相同的输入特征映射通道,并利用群卷积技术高效排列卷积滤波器。DualConv可以在任何CNN模型中使用,如VGG-16和ResNet-50进行图像分类,你只看一次(YOLO)和R-CNN进行对象检测,或完全卷积网络(FCN)进行语义分割。在这项工作中,我们对DualConv进行了广泛的分类测试,因为这些网络架构构成了许多其他任务的主干。

2024-04-10 11:18:49 182

原创 Pointnet++改进即插即用系列:全网首发DilatedReparamBlock |即插即用,提升特征提取模块性能

近年来,大核卷积神经网络(ConvNets)得到了广泛的研究关注,但有两个尚未解决的关键问题需要进一步研究。1)现有的大核卷积神经网络的架构在很大程度上遵循了传统卷积神经网络或变压器的设计原则,而大核卷积神经网络的架构设计仍然有待解决。2)由于变形控制了多种模态,卷积神经网络在视觉以外的领域是否也具有较强的普遍感知能力还有待研究。在本文中,我们从两个方面做出贡献。1)我们提出了设计大核卷积神经网络的四个架构准则,其核心是利用大核区别于小核的本质特征——它们可以看到宽而不深入。

2024-04-09 12:20:15 78

原创 Pointnet++改进即插即用系列:全网首发RCSOSA重参数化卷积架构 |即插即用,提升特征提取模块性能

我们首先将RepVGG/RepConv与ShuffleNet相结合,开发了RepVGG/RepConv ShuffleNet (RCS),该RCS受益于重新参数化,可以在训练阶段提供更多的特征信息,减少推理时间。然后,我们构建了一个基于rcs的一次性聚合(RCSOSA)模块,该模块不仅可以降低内存消耗,而且可以进行语义信息提取。

2024-04-09 10:57:52 171

原创 Pointnet++改进即插即用系列:全网首发MSBlock |即插即用,提升特征提取模块性能

2.1 步骤一continueif i >= 1:return out。

2024-04-02 10:31:04 106

原创 Pointnet++改进即插即用系列:全网首发OREPA在线重新参数化卷积,替代普通卷积 |即插即用,提升特征提取模块性能

NAMAAttention注意力机制简介:结构重参数化在各种计算机视觉任务中受到越来越多的关注。它旨在在不引入任何推理时间成本的情况下提高深度模型的性能。虽然这种模型在推理过程中效率很高,但为了达到较高的准确率,这种模型严重依赖于复杂的训练时间块,导致了大量的额外训练成本。在本文中,我们提出了在线卷积重新参数化(OREPA),一种两阶段管道,旨在通过将复杂的训练时间块压缩到单个卷积中来减少巨大的训练开销。为了实现这一目标,我们引入了一个线性缩放层来更好地优化在线块。

2024-04-02 10:25:47 382

原创 Pointnet++改进即插即用系列:全网首发Shift-ConvNets具有大核效应的小卷积核 |即插即用,提升特征提取模块性能

近年来的研究表明,视觉变压器(ViTs)的卓越性能得益于大的接受野。因此,大卷积核设计成为卷积神经网络(cnn)再次伟大的理想解决方案。然而,典型的大卷积核是对硬件不友好的运算符,导致各种硬件平台的兼容性降低。因此,简单地扩大卷积核的大小是不明智的。在本文中,我们揭示了小卷积核和卷积操作可以实现大核大小的关闭效果。然后,我们提出了一种移位算子,确保cnn在稀疏机制的帮助下捕获远程依赖关系,同时保持硬件友好。实验结果表明,我们的移位算子显著提高了常规CNN的准确率,同时显著降低了计算需求。

2024-03-06 12:25:57 347 1

原创 Pointnet++改进即插即用系列:全网首发DBB多元分支块 |即插即用,提升特征提取模块性能

我们提出了一种通用的卷积神经网络(ConvNet)构建块,在不需要任何推理时间成本的情况下提高其性能。该块被命名为多元分支块(DBB),通过组合不同规模和复杂度的分支来增强单个卷积的表示能力,从而丰富特征空间,包括卷积序列、多尺度卷积和平均池化。经过训练后,DBB可以等效地转换为单个转换层进行部署。与新颖的ConvNet体系结构的进步不同,DBB在保持宏观体系结构的同时使训练时间的微观结构复杂化,因此它可以用作任何体系结构的常规转换层的临时替代品。

2024-03-06 11:01:11 188

原创 Pointnet++改进即插即用系列:全网首发RepLKNet超大卷积核, 越大越暴力 |即插即用,提升特征提取模块性能

我们重新审视现代卷积神经网络(cnn)中的大核设计。受视觉转换器(ViTs)最新进展的启发,在本文中,我们证明使用几个大卷积核而不是一堆小核可能是一个更强大的范例。我们提出了五条准则,例如,应用重新参数化的大深度卷积来设计高效的高性能大核cnn。遵循指导方针,我们提出了RepLKNet,一个纯CNN架构,其内核大小为31×31,而不是常用的3×3。

2024-02-26 12:15:34 498

原创 Pointnet++改进卷积系列:全网首发AKConv具有任意采样形状和任意数目参数的卷积核 |即插即用,提升特征提取模块性能

2.1 步骤一# clip p# bilinearreturn outreturn p_nreturn p_0return p。

2024-02-22 11:54:37 119

原创 Pointnet++改进卷积系列:全网首发RFAConv创新空间注意力和标准卷积运算 |即插即用,提升特征提取模块性能

摘要。空间注意被广泛用于提高卷积神经网络的性能。然而,它也有一定的局限性。本文提出了空间注意有效性的新视角,即空间注意机制本质上解决了卷积核参数共享问题。然而,空间注意生成的注意图所包含的信息对于大尺度卷积核来说是不够的。因此,我们提出了一种新的注意机制,即接受场注意(RFA)。现有的空间注意方法,如卷积块注意模块(CBAM)和协调注意(CA),只关注空间特征,没有充分解决卷积核参数共享问题。相比之下,RFA不仅关注接受场空间特征,而且为大尺寸卷积核提供了有效的注意权值。

2024-02-22 11:32:57 357

原创 Pointnet++改进卷积系列:全网首发SCConv用于特征冗余的空间和通道重构卷积 |即插即用,提升特征提取模块性能

卷积神经网络(cnn)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv (spatial and channel reconstruction convolution),以减少冗余计算并促进代表性特征的学习。

2024-02-21 13:43:31 767

原创 Pointnet++改进卷积系列:全网首发DEConv细节增强卷积 |即插即用,提升特征提取模块性能

通过使用重新参数化技术,将DEConv等效地转换为没有额外参数和计算成本的普通卷积。通过为每个信道分配唯一的空间重要性映射(SIM), CGA可以获得更多编码在特征中的有用信息。此外,提出了一种基于cgaba的混合融合方案,可以有效地融合特征并辅助梯度流。通过结合上述组件,我们提出了用于恢复高质量无雾图像的细节增强注意力网络(DEA-Net)。细节增强卷积(DEConv)。

2024-02-21 12:40:15 117

原创 Pointnet++改进卷积系列:全网首发ODConv2全维动态卷积 |即插即用,提升特征提取模块性能

在每个卷积层中学习单个静态卷积核1是现代卷积神经网络(cnn)的常见训练范式。相反,最近的动态卷积研究表明,学习n个卷积核的线性组合,并对其输入依赖的关注进行加权,可以显著提高轻量级cnn的精度,同时保持有效的推理。然而,我们观察到,现有的工作通过核空间的一个维度(关于卷积核数)赋予卷积核以动态特性,而忽略了其他三个维度(关于每个卷积核的空间大小、输入通道数和输出通道数)。受此启发,我们提出了全维动态卷积(ODConv),这是一种更广义但更优雅的动态卷积设计,以推进这一研究方向。

2024-02-01 19:28:59 139

原创 Pointnet++改进优化器系列:全网首发Lion优化器 |即插即用,实现有效涨点

提出了一种将算法发现表述为程序搜索的方法,并将其应用于深度神经网络训练优化算法的发现。我们利用高效的搜索技术来探索无限和稀疏的程序空间。为了弥合代理任务和目标任务之间的巨大泛化差距,我们还引入了程序选择和简化策略。我们的方法发现了一个简单有效的优化算法,Lion(进化符号动量)。它比Adam更节省内存,因为它只跟踪动量。与自适应优化器不同,它的更新对于通过符号操作计算的每个参数具有相同的幅度。我们将Lion与广泛使用的优化器(如Adam和Adafactor)进行比较,以在不同任务上训练各种模型。

2024-02-01 17:57:14 270

原创 Pointnet++改进优化器系列:全网首发Sophia优化器 |即插即用,实现有效涨点

考虑到语言模型预训练的巨大成本,对优化算法进行重大改进将大大减少训练的时间和成本。Adam及其变体多年来一直是最先进的,而更复杂的二阶(基于hessian的)优化器通常会导致过多的每一步开销。在本文中,我们提出了索菲亚,二阶裁剪随机优化,一个简单的可扩展的二阶优化器,它使用对角线Hessian的轻量级估计作为前置条件。更新是梯度的移动平均值除以估计的Hessian的移动平均值,然后是元素裁剪。该裁剪控制了最坏情况下的更新大小,抑制了非凸性和Hessian沿轨迹快速变化的负面影响。

2024-01-27 23:20:19 269

原创 Pointnet++改进优化器系列:全网首发AdamW优化器 |即插即用,实现有效涨点

L2正则化和权重衰减正则化对于标准随机梯度下降是等效的(当通过学习率重新缩放时),但正如我们所证明的,对于自适应梯度算法,如Adam,情况并非如此。虽然这些算法的常见实现采用L2正则化(通常称为“权重衰减”,由于我们暴露的不等价性可能会产生误导),但我们提出了一个简单的修改,通过将权重衰减与w.r.t.损失函数所采取的优化步骤解耦来恢复权重衰减正则化的原始公式。

2024-01-27 23:10:12 199

原创 Pointnet++改进注意力机制系列:全网首发ShuffleAttention注意力机制 |即插即用,实现有效涨点

注意机制使神经网络能够准确地关注输入的所有相关元素,已成为提高深度神经网络性能的重要组成部分。在计算机视觉研究中广泛应用的注意机制主要有空间注意和通道注意两种,它们的目的分别是捕捉像素级的成对关系和通道依赖关系。虽然将它们融合在一起可以获得比单独实现更好的性能,但它将不可避免地增加计算开销。在本文中,我们提出了一个高效的Shuffle Attention (SA)模块来解决这个问题,该模块采用Shuffle Units来有效地结合两种类型的注意机制。

2024-01-18 11:48:40 197

原创 Pointnet++改进注意力机制系列:全网首发DoubleAttention注意力机制 |即插即用,实现有效涨点

学习捕捉远程关系是图像/视频识别的基础。现有的CNN模型通常依赖于增加深度来建模这种关系,这是非常低效的。在这项工作中,我们提出了“双注意块”,这是一种新的组件,它从输入图像/视频的整个时空空间中聚集和传播信息全局特征,使后续卷积层能够有效地从整个空间中访问特征。该组件采用双注意机制,分两步进行设计,第一步通过二阶注意池将整个空间的特征聚集成一个紧凑的集合,第二步通过另一个注意自适应地选择特征并将其分配到每个位置。所提出的双注意块易于采用,并且可以方便地插入现有的深度神经网络中。

2024-01-18 11:30:12 215

原创 Pointnet++改进注意力机制系列:全网首发TripletAttention轻量且有效注意力机制 |即插即用,实现有效涨点

由于注意机制具有在通道或空间位置之间建立相互依赖关系的能力,近年来在各种计算机视觉任务中得到了广泛的研究和应用。在本文中,我们研究了轻量级但有效的注意机制,并提出了三重注意,这是一种利用三分支结构捕获跨维交互来计算注意权重的新方法。对于输入张量,三元组注意力通过旋转操作建立维度间依赖关系,然后进行残差变换,并以可忽略不计的计算开销对通道间和空间信息进行编码。我们的方法简单高效,可以作为附加模块轻松插入经典骨干网。

2024-01-15 12:11:19 404

原创 Pointnet++改进注意力机制系列:全网首发SE通道注意力机制 |即插即用,实现有效涨点!

卷积算子是卷积神经网络(cnn)的核心组成部分,它使网络能够通过融合每层局部接受域内的空间和通道信息来构建信息特征。之前的广泛研究已经调查了这种关系的空间成分,试图通过提高整个特征层次的空间编码质量来加强CNN的表征能力。在这项工作中,我们将重点放在通道关系上,并提出了一种新的架构单元,我们称之为“挤压和激励”(SE)块,该单元通过明确建模通道之间的相互依赖性,自适应地重新校准通道特征响应。我们表明,这些块可以堆叠在一起,形成SENet架构,在不同的数据集上非常有效地泛化。

2024-01-15 11:58:12 175

原创 Pointnet++改进系列:全网首发RepVGG结构重参数化 |即插即用,实现有效涨点

我们提出了一种简单但功能强大的卷积神经网络结构,该结构具有类似vgg的推理时间主体,仅由3 × 3卷积和ReLU堆栈组成,而训练时间模型具有多分支拓扑结构。通过结构重参数化技术实现训练时间和推理时间结构的解耦,将模型命名为RepVGG。在ImageNet上,RepVGG达到了80%以上的top-1精度,据我们所知,这是第一次对一个普通模型。

2024-01-12 11:48:46 133 2

原创 Pointnet++改进卷积系列:全网首发PConv(减少冗余计算) |即插即用,提升特征提取模块性能

为了设计快速的神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,我们观察到FLOPs的这种减少并不一定会导致类似程度的延迟减少。这主要源于低效率的每秒浮点操作数(FLOPS)。为了实现更快的网络,我们回顾了流行的运营商,并证明了如此低的FLOPS主要是由于运营商频繁的内存访问,特别是深度卷积。因此,我们提出了一种新的部分卷积(PConv),通过减少冗余计算和同时存储访问,更有效地提取空间特征。

2024-01-12 11:31:17 154

原创 Pointnet++改进注意力机制系列:全网首发MLCA轻量级的混合本地信道注意力机制 |即插即用,实现有效涨点

注意机制是计算机视觉中应用最广泛的组成部分之一,它可以帮助神经网络突出重要元素,抑制无关元素。然而,绝大多数通道注意机制只包含通道特征信息,忽略了空间特征信息,导致模型表示效果或目标检测性能较差,且空间注意模块往往复杂且昂贵。为了在性能和复杂性之间取得平衡,本文提出了一种轻量级的混合本地信道注意(MLCA)模块来提高目标检测网络的性能,该模块可以同时包含信道信息和空间信息,以及局部信息和全局信息,以提高网络的表达效果。

2024-01-11 11:32:21 686

原创 Pointnet++改进注意力机制系列:全网首发CPCA通道先验卷积注意力机制 |即插即用,实现有效涨点

本文提出了一种有效的通道先验卷积注意(CPCA)方法,该方法支持通道和空间维度上注意权重的动态分布。通过采用多尺度深度卷积模块,有效地提取空间关系,同时保留先验通道。CPCA具有聚焦信息渠道和重点区域的能力。提出了一种基于CPCA的医学图像分割网络CPCANet。CPCANet在两个公开可用的数据集上进行验证。通过与最先进算法的比较,CPCANet实现了改进的分割性能,同时需要更少的计算资源。SE(图1 (a))只包含通道注意,这限制了它充分选择重要区域的能力。

2024-01-09 10:56:00 722

原创 Pointnet++改进注意力机制系列:全网首发LSKAttention大核卷积注意力机制 |即插即用,实现有效涨点

在本文中,我们考虑到这些先验因素,提出了大选择性核网络(LSKNet)。LSKNet可以动态调整其大空间感受场,更好地模拟遥感场景中各种物体的测距环境。据我们所知,这是第一次在遥感目标检测领域探索大型和选择性的内核机制。没有花哨的东西,LSKNet在标准基准上设定了新的最先进的分数,即HRSC2016 (98.46% mAP), DOTA-v1.0 (81.85% mAP)和FAIR1M-v1.0 (47.87% mAP)。基于类似的技术,我们在2022年大湾区国际算法大赛中获得第二名。

2024-01-09 10:24:48 627

原创 Pointnet++改进注意力机制系列:全网首发Spatial Group-wise Enhance轻量注意力机制 |即插即用,实现有效涨点

卷积神经网络(Convolutional Neural Networks, cnn)通过收集分层的、不同部分的语义子特征来生成复杂对象的特征表示。这些子特征通常以分组的形式分布在每一层的特征向量中[43,32],代表各种语义实体。然而,这些子特征的激活往往受到相似模式和噪声背景的空间影响,导致错误的定位和识别。我们提出了一个空间群智能增强(SGE)模块,该模块可以通过为每个语义组中的每个空间位置生成注意因子来调整每个子特征的重要性,从而使每个个体组能够自主增强其学习到的表达并抑制可能的噪声。

2024-01-08 13:52:49 972

原创 Pointnet++改进注意力机制系列:全网首发SimAM无参注意力机制 |即插即用,实现有效涨点

在本文中,我们为卷积神经网络(ConvNets)提出了一个概念简单但非常有效的注意力模块。与现有的通道智能和空间智能注意力模块相比,我们的模块在不向原始网络添加参数的情况下推断出层中特征映射的三维注意力权重。具体来说,我们基于一些著名的神经科学理论,提出优化能量函数来找到每个神经元的重要性。我们进一步推导了能量函数的快速封闭解,并表明该解可以在不到十行代码中实现。该模块的另一个优点是,大多数算子都是根据定义的能量函数的解来选择的,避免了过多的结构调整工作。

2024-01-08 13:23:36 518

原创 Pointnet++损失函数改进:Focalloss | 助力解决正负样本比例不均衡问题

迄今为止精度最高的目标检测器是基于R-CNN推广的两阶段方法,其中分类器应用于稀疏的候选目标位置集。相比之下,应用于对可能的目标位置进行常规、密集采样的单级探测器有可能更快、更简单,但到目前为止还不如两级探测器的准确性。在本文中,我们调查了为什么会出现这种情况。我们发现,在密集检测器训练过程中遇到的极端前景-背景类不平衡是主要原因。我们建议通过重塑标准交叉熵损失来解决这种类不平衡,从而降低分配给分类良好的示例的损失的权重。

2024-01-07 20:47:44 537

原创 Pointnet++改进注意力机制系列:全网首发CoordAtt注意力机制 |即插即用,实现有效涨点

最近关于移动网络设计的研究已经证明了通道注意(例如,挤压和激励注意)对于提高模型性能的显着有效性,但它们通常忽略了位置信息,而位置信息对于生成空间选择性注意图非常重要。在本文中,我们提出了一种新的移动网络注意机制,将位置信息嵌入到通道注意中,我们称之为“坐标注意”。与通过二维全局池化将特征张量转换为单个特征向量的通道注意不同,坐标注意将通道注意分解为两个一维特征编码过程,分别沿着两个空间方向聚合特征。这样可以在一个空间方向上捕获远程依赖关系,同时在另一个空间方向上保持精确的位置信息。

2024-01-04 12:12:23 1225

原创 Pointnet++改进:在特征提取模块加入SegNext_Attention注意力机制,卷积注意力打造高性能点云分割模型

我们提出了SegNeXt,一个用于语义分割的简单卷积网络架构。近年来,基于变换的语义分割模型由于其在空间信息编码中的自注意性而在语义分割领域占据主导地位。在本文中,我们证明了卷积注意是一种比自注意机制更有效的编码上下文信息的方法。通过重新研究成功的分割模型所具有的特征,我们发现了导致分割模型性能提高的几个关键因素。这促使我们设计一种新颖的卷积注意力网络,使用廉价的卷积运算。

2024-01-04 11:32:53 826 9

原创 Pointnet++改进:在特征提取模块加入EMA注意力机制

在各种计算机视觉任务中,通道或空间注意机制对于产生更多可识别的特征表示具有显着的有效性。然而,通过通道降维来建模跨通道关系可能会对提取深度视觉表征带来副作用。本文提出了一种新型的高效多尺度注意力(EMA)模块。为了保留每个通道上的信息和减少计算开销,我们将部分通道重构为批处理维度,并将通道维度分组为多个子特征,使空间语义特征在每个特征组内均匀分布。具体而言,除了编码全局信息以重新校准每个并行分支中的通道权重外,还通过跨维交互进一步聚合两个并行分支的输出特征,以捕获像素级成对关系。

2024-01-03 13:12:34 1201

原创 Pointnet++改进:在特征提取模块加入GAM注意力机制

NAMAAttention注意力机制简介:注意力机制是近年来研究的热点之一(Wang et al。[2017],Hu等人[2018],Park等人[2018]、Woo等人[2018]和Gao等人[199])。它有助于深度神经网络抑制不太显著的像素或通道。许多先前的研究都侧重于通过注意操作捕捉显著特征(Zhang等人[2020],Misra等人[2021年])。这些方法成功地利用了来自不同维度特征的相互信息。然而,它们缺乏对权重的贡献因素的考虑,这能够进一步抑制不重要的通道或像素。受Liu等人的启发。

2024-01-03 13:05:19 965

原创 Pointnet++改进:在特征提取模块加入NAMAttention注意力机制,有效涨点

NAMAAttention注意力机制简介:注意力机制是近年来研究的热点之一(Wang et al。[2017],Hu等人[2018],Park等人[2018]、Woo等人[2018]和Gao等人[199])。它有助于深度神经网络抑制不太显著的像素或通道。许多先前的研究都侧重于通过注意操作捕捉显著特征(Zhang等人[2020],Misra等人[2021年])。这些方法成功地利用了来自不同维度特征的相互信息。然而,它们缺乏对权重的贡献因素的考虑,这能够进一步抑制不重要的通道或像素。受Liu等人的启发。

2024-01-03 12:46:28 1259

原创 Pointnet++改进:在特征提取模块加入CBAM注意力机制

简介:论文介绍:摘要。我们提出了卷积块注意模块(CBAM),这是一种简单而有效的前馈卷积神经网络注意模块。给定一个中间特征映射,我们的模块沿着两个独立的维度依次推断注意力映射,通道和空间,然后将注意力映射乘以输入特征映射以进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,开销可以忽略不计,并且可以与基础CNN一起进行端到端训练。我们通过在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上进行大量实验来验证我们的CBAM。

2024-01-02 13:33:28 845 2

原创 Pointnet++改进:更换不同的激活函数,打造更优性能

在models/pointnet2_utils.py中加入以下代码,该代码将PointNetSetAbstraction中的mlp三层感知机重新封装成一个class Conv模块,便于直接在Conv模块中修改激活函数,修改后的代码和源码结构是一致的。修改不同的激活函数直接在Conv类中修改即可。在不同的模型中修改调用即可,如在models/pointnet2_sem_seg.py文件中修改,训练即可。

2024-01-02 13:03:35 625

原创 Pointnet++环境配置(Windows11和ubuntu)及训练教程

PS:前两行命令是数据处理的命令,主要是进行数据读取和生成相应的训练数据格式,在Ubuntu上是正常运行的,在Windows上运行会失败,无法生成训练用的数据格式,所以最好在Ubuntu上训练,如果一定要用Windows,可以ubuntu上生成数据格式在导到Windows上,数据生成不需要安装torch。通过anaconda配置的环境,在官网找的命令安装的,版本是2.1.0+cu118。训练命令:我使用的pycharm,直接在pycharm中打开终端,运行命令。Python版本:3.7。

2024-01-01 22:34:52 915

原创 YOLOv5改进:在C3模块不同位置添加SegNext_Attention

我们提出了SegNeXt,一个简单的语义卷积网络架构分割。近年来,基于变换的语义分割模型由于其在空间编码中的自注意性而在语义分割领域占据主导地位信息。在本文中,我们证明了卷积注意是一种更有效的方法变压器中的自注意机制是对上下文信息进行编码的有效途径。通过重新审视成功者所拥有的特点在分割模型中,我们发现了导致分割模型性能改进的几个关键组件。这促使我们去设计一部小说使用廉价卷积运算的卷积注意力网络。

2023-12-19 15:18:12 631

原创 4070显卡配置ubuntu深度学习环境

本文主要记录一下自己深度学习环境的配置,具体的安装教程有很多,这里就不赘述了。

2023-12-19 13:41:36 844

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除