- 博客(5)
- 收藏
- 关注
原创 图像超分辨-2:CVPR2020: Dual Regression Networks for SISR
之前学习图像超分辨一直盯着GAN网络,感觉生成对抗才是超分辨王道。最近偶然看到这篇CVPR的会议论文,文章中做了一些半监督的处理,让图像超分辨减少了对成对数据集的依赖,感觉打开了一些新思路,记录下来方便以后学习创新。本文针对了两个问题做了创新:1.损失函数:目前主流的图像超分辨损失函数几乎都是对网络生成的SR和给定高分辨率HR做损失,不管是传统判别器还是相对判别器都是对这一损失求backward。
2023-05-18 22:02:33 239 2
原创 图像超分辨--SRGAN 解读和感悟
adversarial_loss为生成图像过判别器后的值,由于希望过判别器后的值越大越好,所以adversarial_loss=torch.mean(1 - out_labels),即out_labels越大生成器模型就越接近成功了。那么从上面这段话中,我们很容易得到一个基本的训练要求,那就是你得有巨多巨多巨多成对的高分辨率图像和低分辨率图像,这种训练也是所谓的监督学习。最近在学习图像超分辨的任务,看了一些论文,从较古老的SRGAN到最近IEEE上的新论文都进行了简单的阅读,感觉要学习的东西还是挺多呀!
2023-05-11 20:58:51 1218 4
原创 Spartan6 IODELAY2 简介及应用
在查询一堆资料后发现Spartan6 系列的IODELAY2资料很少,故只有靠自己摸索,以此记录,可为同样还在用Spartan6的同仁们提供些许帮助。
2022-10-09 09:42:35 2402 4
原创 图像傅里叶变换及滤波
图像的傅里叶变换和常规的傅里叶变换没什么本质不同,都是利用二维傅里叶变换,图像傅里叶之后uv常取和原图像像素大小相同。在python中,有两个函数可直接进行离散傅里叶变换,np.fft.fft( )和cv2.dft( )。两个函数没有本质的区别,用法一样。可通过变换后的函数查看每一个F(u,v)的图像,其值就是把整个图像的值加起来*f(x,y). 通过np.fft.fft(img)之后得到傅里叶变换结果,F(u,v)是复数,可分别查看其幅度谱和相位谱, 以下图为例:经过DFT之
2022-06-12 16:21:22 1467
原创 基于FPGA的直方图均衡
其实网上有不少的直方图均衡的文章,我这原理就不详细说明了,有想了解原理的小伙伴可以看这一篇https://blog.csdn.net/qq_31347869/article/details/89395485。我在此主要讲的是直方图均衡的FPGA实现 首先讲一下大体的思路:为了方便以分辨率为128*128,256灰度值的bmp图像为例,取原始图片的像素点灰度值为nk。整个直方图均衡过程可以表示为这个公式,可按照不同的图片分辨率和灰度大小进行调换 :其中的Fk是我们最后...
2021-09-22 16:50:22 676
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人