Numpy IO:npy、npz

参考:菜鸟教程

1. Numpy IO

Numpy 可以读写磁盘上的文本数据或二进制数据;
NumPy 为 ndarray 对象引入了一个简单的文件格式:npy ,用于存储重建 ndarray 所需的数据、图形、dtype 和其他信息;
另外,Numpy还引入了npz格式,用于保存多个数组文件;

常用的 IO 函数有:

  • save() 和 load() 函数是读写文件数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npy 的文件中
  • savze() 函数用于将多个数组写入文件,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npz 的文件中
  • loadtxt() 和 savetxt() 函数处理正常的文本文件(.txt 等)

2. npy:save() & load()

  • 2.1 save() 函数:将数组保存到以 .npy 为扩展名的文件中

numpy.save(file, arr, allow_pickle=True, fix_imports=True)

  • file:要保存的文件,扩展名为 .npy,如果文件路径末尾没有扩展名 .npy,该扩展名会被自动加上。
  • arr: 要保存的数组
  • allow_pickle: 可选,布尔值,允许使用 Python pickles 保存对象数组,Python 中的 pickle 用于在保存到磁盘文件或从磁盘文件读取之前,对对象进行序列化和反序列化。
  • fix_imports: 可选,为了方便 Pyhton2 中读取 Python3 保存的数据。
  • 2.2 实例
a = np.array([1,2,3,4,5]) 
# 保存到 outfile.npy 文件上
np.save('outfile.npy',a) 
# 保存到 outfile2.npy 文件上,如果文件路径末尾没有扩展名 .npy,该扩展名会被自动加上
np.save('outfile2',a)
  • 2.3 查看
    直接用 cat 命令查看文件会得到乱码,因为它们是 Numpy 专用的二进制格式后的数据。
$ cat outfile.npy 
?NUMPYv{'descr': '<i8', 'fortran_order': False, 'shape': (5,), }  
$ cat outfile2.npy 
?NUMPYv{'descr': '<i8', 'fortran_order': False, 'shape': (5,), } 
  • 2.4 load() 函数
b = np.load('outfile.npy')  
print (b)
out:[1 2 3 4 5]

3. npz:savez() & load()

  • 3.1 savez() 函数:将多个数组保存到以 npz 为扩展名的文件中

numpy.savez(file, *args, **kwds)

  • file:要保存的文件,扩展名为 .npz,如果文件路径末尾没有扩展名 .npz,该扩展名会被自动加上。
  • args: 要保存的数组,可以使用关键字参数为数组起一个名字,非关键字参数传递的数组会自动起名为 arr_0, arr_1, … 。
  • kwds: 要保存的数组使用关键字名称。
  • 3.2 实例
a = np.array([[1,2,3],[4,5,6]])
b = np.arange(0, 1.0, 0.1)
c = np.sin(b)
# c 使用了关键字参数 sin_array
np.savez("runoob.npz", a, b, sin_array = c)
r = np.load("runoob.npz")  
print(r.files) # 查看各个数组名称
print(r["arr_0"]) # 数组 a
print(r["arr_1"]) # 数组 b
print(r["sin_array"]) # 数组 c
out:
['sin_array', 'arr_0', 'arr_1']
[[1 2 3]
 [4 5 6]]
[0.  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
[0.         0.09983342 0.19866933 0.29552021 0.38941834 0.47942554
 0.56464247 0.64421769 0.71735609 0.78332691]

4. savetxt() 和 loadtxt()

savetxt() 函数是以简单的文本文件格式存储数据,对应的使用 loadtxt() 函数来获取数据。

np.loadtxt(FILENAME, dtype=int, delimiter=’ ')
np.savetxt(FILENAME, a, fmt="%d", delimiter=",")

  • 参数 delimiter 可以指定各种分隔符、针对特定列的转换器函数、需要跳过的行数等。
a = np.array([1,2,3,4,5]) 
np.savetxt('out.txt',a) 
b = np.loadtxt('out.txt')   
print(b)
out:[1. 2. 3. 4. 5.]
a=np.arange(0,10,0.5).reshape(4,-1)
np.savetxt("out.txt",a,fmt="%d",delimiter=",") # 改为保存为整数,以逗号分隔
b = np.loadtxt("out.txt",delimiter=",") # load 时也要指定为逗号分隔
print(b)
out:
[[0. 0. 1. 1. 2.]
 [2. 3. 3. 4. 4.]
 [5. 5. 6. 6. 7.]
 [7. 8. 8. 9. 9.]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值