1.冒泡排序
冒泡排序:重复遍历数据序列,依次比较两个相邻的元素,如果它们的顺序颠倒,就把他们交换过来。
具体方法:(升序)
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
我们看一下排序简要过程:
原序列:5 2 8 6 3 9 0
上述过程的代码片:
一共7个元素,第一趟:6次比较;第二趟:5次比较;… ;第六趟:1次比较。n个元素需要比较n-1趟,每一趟都只需比较未排好序的序列,也就是说,需要两层循环。第一层控制的是比较的趟数,共n-1趟;第二层控制的是每趟需要比较的次数。每趟需要比较的次数都是不同的,所以定义tmp记录次数,外层循环更新,tmp也更新。
void BubbleSort(int* a, int n)// 冒泡排序
{
for (int i = 0; i < n - 1; ++i) // 控制循环趟数
{
int tmp = n - i - 1; // 记录每趟需要比较的次数
for (int j = 0; j < tmp; ++j) // 控制比较次数
{
if (a[j] > a[j + 1])
{
Swap(&a[j], &a[j + 1]);
}
}
}
}
总结
稳定性:稳定
时间复杂度:O(N2)
最好情况:O(N) 最坏情况:O(N2)
空间复杂度:O(1)
2.快速排序
快速排序:任取待排序元素序列中的某个元素作为基准值,按照该基准值将待排序集合分割成两个子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后左右子序列重复该过程,直到所有元素都排列在相应的位置上为止,是分治法的经典体现。
快速排序有很多常见的方法,比如: 左右指针法、前后指针法、挖坑法、三数取中法优化、非递归实现。
代码中的函数形参left、right都是数组下标
2.1 左右指针法
从序列的两端下标开始遍历,选定一个基准值(下面的代码选择的是右边元素,先控制左下标。若右边元素为基准值,则先动左下标;若左边元素为基准值,则先动右下标),将小于基准值的元素放到左边序列,大于基准值的元素放到右边序列,最后基准值归位。这只是其中一段序列的定位,需用递归实现。
int _QuickPartSort1(int* a, int left, int right)// 快速排序(左右指针法)
{
int key = a[right]; //将序列最后一个元素当做基准值
int keyindex = right; //记录基准值的下标
while (left < right)
{ //下标控制,左右下标从序列的左右两端向中间比较
//左边的值小于基准值,则不动,指针向右走
while (left < right && a[left] <= key)
{
++left;
}
//右边的值大于基准值,则不动,指针向左走
while (left < right && a[right] >= key)
{
--right;
}
//此时,left下标的值和right下标的值都不符合要求,则交换
if (left < right)
{
Swap(&a[left], &a[right]);
}
}
//其余元素都已归位,最后将基准值写入序列
Swap(&a[left], &a[keyindex]);
return left;
}
void QuickSort1(int* a, int left, int right)// 快速排序(左右指针法)
{
if (left >= right)
return;
int keyindex = _QuickPartSort1(a, left, right); //接收基准值下标
QuickSort1(a, left, keyindex - 1); //递归实现左子序列
QuickSort1(a, keyindex + 1, right);//递归实现右子序列
}
2.2 前后指针法
这块代码不太容易懂,要举个例子试一试
前后指针法:相当于定义一前一后下标prev和cur,当prev的元素大于基准值,且prev!=cur时,交换元素,循环执行,将当前序列大于基准值的元素过滤到右边。
int _QuickPartSort2(int* a, int left, int right) // 快速排序(前后指针法)
{
int key = a[right]; //记录基准值
int prev = left - 1; //记录当前位置前面的下标
int cur = left; //记录当前位置下标
while (cur < right) //保证下标不越界
{
if (a[cur] < key&&(++prev) != cur)
{ //如果当前元素小于基准值,当prev小于cur时,交换元素
//此时的cur元素小于基准值,prev元素大于基准值,外层循环执行,将大于基准值的元素过滤到右边
Swap(&a[cur], &a[prev]);
}
++cur;
}
//将prev归位
++prev;
//交换,放入基准值
Swap(&a[right], &a[prev]);
return prev;
}
void QuickSort2(int* a, int left, int right)// 快速排序(前后指针法)
{
if (left >= right)
return;
int keyindex = _QuickPartSort2(a, left, right);//接收基准值下标
QuickSort2(a, left, keyindex - 1); //递归实现左子序列
QuickSort2(a, keyindex + 1, right); //递归实现右子序列
}
2.3 挖坑法
相当于左右指针,先从左边开始遍历,遇到大于基准值的元素,将其挪到右边,这时这个位置成为一个“坑”,等着被覆盖;从右边遍历,遇到小于基准值的元素,将其挪到左边,覆盖左边的“坑”,而自己这个位置成为了下一个“坑”。
int _QuickPartSort3(int* a, int left, int right)// 快速排序(挖坑法)
{
int key = a[right]; //记录基准值
while (left < right)
{
//left元素小于等于基准值,将左下标右移
while (left < right&&a[left] <= key)
{
++left;
}
a[right] = a[left]; //将大于基准值的元素挪到右边
//right元素大于等于基准值,将右下标左移
while (left < right&&a[right] >= key)
{
--right;
}
a[left] = a[right]; //将小于基准值的元素挪到左边
}
a[left] = key; //定位基准值
return left;
}
void QuickSort3(int* a, int left, int right)// 快速排序(挖坑法)
{
if (left >= right)
return;
int keyindex = _QuickPartSort3(a, left, right);//接收基准值下标
QuickSort3(a, left, keyindex - 1); //递归实现左子序列
QuickSort3(a, keyindex + 1, right); //递归实现右子序列
}
2.4 三数取中法优化
快速排序的平均运行时间是O(NlogN),而最坏的情形时性能为O(N2)。序列有序就是快速排序的最坏情况,假设有N层子序列,那么每一层都是O(N2),要克服这种最坏情况,可以用三数取中法。
三数取中就是用mid存三个元素中的中间数,返回mid,将mid作为基准值进行排序。适用于对数据量较大的数据进行排序,而对于数据量较小的数据则表现一般。
int GetMidIndex(int* a, int left, int right) // 优化方法:三数取中
{
int mid = left + (right - left) / 2; //mid取left和right的平均值
if (a[left] < a[mid]) //实际上就是返回三个下标所对应的元素中的中间数
{
if (a[mid] < a[right])
return mid;
else if (a[left] < a[right])
return right;
else return left;
}
else // a[left]>a[mid]
{
if (a[right] < a[mid])
return mid;
else if (a[left] < a[right])
return left;
else return right;
}
}
用三数取中法能够优化上述方法,只需将mid返回值作为序列的基准值进行排序。
eg. 挖坑法 三数取中 优化:
int _QuickPartSort33(int* a, int left, int right)// 快速排序(挖坑法)
{
int mid = GetMidIndex(a, left, right); //三数取中
Swap(&a[mid], &a[right]); //将取到的基准值交换到序列最后
int key = a[right];
while (left < right)
{
while (left < right&&a[left] <= key)
{
++left;
}
if (left < right)
{
a[right] = a[left];
right--;
}
while (left < right&&a[right] >= key)
{
--right;
}
if (left < right)
{
a[left] = a[right];
left++;
}
}
a[left] = key;
return left;
}
void QuickSort33(int* a, int left, int right)// 快速排序(挖坑法)
{
if (left >= right)
return;
int keyindex = _QuickPartSort33(a, left, right);
QuickSort33(a, left, keyindex - 1);
QuickSort33(a, keyindex + 1, right);
}
2.5 非递归实现
快速排序的非递归实现需要栈,文末有实现栈的代码。
void QuickSort4(int* a, int left, int right)
{
Stack s;
StackInit(&s);
StackPush(&s, left);
StackPush(&s, right);
while (!StackEmpty(&s))
{
int end = StackTop(&s); //right
StackPop(&s);
int begin = StackTop(&s); //left
StackPop(&s);
int keyindex = _QuickPartSort3(a, begin, end); //挖坑法,接收基准值下标
//[begin,keyindex-1] key [keyindex+1,end]
//保存左子序列
if (begin < keyindex - 1)
{
StackPush(&s, begin);
StackPush(&s, keyindex - 1);
}
//保存右子序列
if (keyindex + 1 < end)
{
StackPush(&s, keyindex + 1);
StackPush(&s, end);
}
}
}
总结
快速排序整体的综合性能和使用场景都是比较好的。
稳定性:不稳定
时间复杂度:O(NlogN)
空间复杂度:O(logN)
实现栈:
#include<assert.h>
#include<stdio.h>
#include<malloc.h>
#include<stdbool.h>
typedef int STDataType;
struct Stack
{
STDataType* _array;
size_t _top;
size_t _capacity;
};
typedef struct Stack Stack;
void StackInit(Stack* ps);
void StackDestory(Stack* ps);
void StackPush(Stack* ps,STDataType x);
void StackPop(Stack* ps);
STDataType StackTop(Stack* ps);
size_t StackSize(Stack* ps);
bool StackEmpty(Stack* ps);
void StackInit(Stack* ps)
{
assert(ps);
ps->_array = NULL;
ps->_top = 0;
ps->_capacity = 0;
}
void StackDestory(Stack* ps)
{
assert(ps);
if (ps->_array != NULL)
{
free(ps->_array);
ps->_array = NULL;
ps->_capacity = ps->_top = 0;
}
}
void StackPush(Stack* ps, STDataType x)
{
assert(ps);
if (ps->_top == ps->_capacity)
{
size_t newcapacity = ps->_capacity == 0 ? 2 : ps->_capacity * 2;
ps->_array = (STDataType*)realloc(ps->_array, newcapacity * sizeof(STDataType));
ps->_capacity = newcapacity;
}
ps->_array[ps->_top] = x;
ps->_top++;
}
void StackPop(Stack* ps)
{
assert(ps && ps->_top > 0);
--ps->_top;
}
STDataType StackTop(Stack* ps)
{
assert(ps && ps->_top > 0);
return ps->_array[ps->_top - 1];
}
size_t StackSize(Stack* ps)
{
assert(ps);
return ps->_top;
}
bool StackEmpty(Stack* ps)
{
assert(ps);
return ps->_top == 0;
}
// 测试
void TestStack()
{
Stack s;
StackInit(&s);
StackPush(&s, 1);
StackPush(&s, 2);
StackPush(&s, 3);
StackPush(&s, 4);
while (!StackEmpty(&s))
{
printf("%d ", StackTop(&s));
StackPop(&s);
}
printf("\n");
StackDestory(&s);
}