踩坑历险记:can‘t convert np.ndarray of type numpy.object_.

问题记录

我有一个numpy.ndarray类型的数组,数组里面的数据是tensor类型,现在我想将这个数组转化为tensor类型,然后报错了,代码和报错截图如下:
代码及代码运行截图

import numpy as np
import torch

a = torch.tensor([1, 1, 1])
b = torch.tensor([2, 2, 2])
c = np.array([a, b])
print("print the c: \n {}\n".format(c))
print("c's type is {}".format(type(c)))

d = torch.tensor(c)
print("print the d: \n {}\n".format(d))
print("d's type is {}".format(type(d)))

代码
报错截图
报错截图
错误原因解释:就是numpy数据类型里只有float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, bool,没有tensor类型,所以出错了。一般而言,只要对数组里的数据进行强制转换,转换为float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, bool中的任意一种都行,可以参考这篇文章 异常can’t convert np.ndarray of type numpy.object_.。但不适用我们这次的问题。

解决方法

如果有大神晓得其他方法,并且能在评论区告诉我的话,那就真的感激不尽啦!

方法一:蠢方法

用了蠢方法,先遍历将numpy.ndarray数组里的元素全部转换为numpy.ndarray类型,也就是我将数组里的tensor类型数据转换为了numpy.ndarray类型,然后再使用torch.tensor命令进行转换,嗯,然后就成功了。
代码及代码运行截图

import numpy as np
import torch

a = torch.tensor([1, 1, 1])
b = torch.tensor([2, 2, 2])
c = np.array([a, b])
print("print the c: \n {}\n".format(c))
print("c's type is {}".format(type(c)))

c = [val.numpy() for val in c]  #  改动在这里,将tensor转换为了numpy
d = torch.tensor(c)
print("print the d: \n {}\n".format(d))
print("d's type is {}".format(type(d)))

代码

方法二:还可以的方法

先将numpy.ndarray数组转换为list类型,再使用torch.stack命令进行转换,嗯,然后也成功了。
代码及代码运行截图

import numpy as np
import torch

a = torch.tensor([1, 1, 1])
b = torch.tensor([2, 2, 2])
c = np.array([a, b])
print("print the c: \n {}\n".format(c))
print("c's type is {}".format(type(c)))

d = torch.stack(list(c))   # 在这里改动了
print("print the d: \n {}\n".format(d))
print("d's type is {}".format(type(d)))

代码运行截图

参考文献

  1. 异常can’t convert np.ndarray of type numpy.object_.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值