各项异性扩散(Anisotropic diffusion)–算法简介(python)代码实现
学习博文 https://blog.csdn.net/qq_38784098/article/details/81605963
时执行的结果展示:
1.原理简介
各向异性扩散滤波主要是用来平滑图像的,克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的,和双边滤波很像。各向异性扩散,也叫做P–M扩散,在图像处理和计算机视觉中广泛用于保持图像细节特征的同时减少噪声。
通常我们有将图像看作矩阵的,看作图的,看作随机过程的,记得过去还有看作力场的。这次新鲜,将图像看作热量场了。每个像素看作热流,根据当前像素和周围像素的关系,来确定是否要向周围扩散。比如某个邻域像素和当前像素差别较大,则代表这个邻域像素很可能是个边界,那么当前像素就不向这个方向扩散了,这个边界也就得到保留了。
具体的推导公式都是热学上的,自己也不太熟悉,感兴趣的可以去看原论文,引用量超7000吶。我这里只介绍一下最终结论用到的公式。
主要迭代方程如下:
I就是图像了,因为是个迭代公式,所以有迭代次数t。
四个散度公式是在四个方向上对当前像素求偏导,news就是东南西北嘛,公式如下:
而cN/cS/cE/cW则代表四个方向上的导热系数,边界的导热系数都是小的。公式如下:
最后整个公式需要先前设置的参数主要有三个,迭代次数t,根据情况设置;导热系数相关的k,取值越大越平滑,越不易保留边缘;lambda同样也是取值越大越平滑。
2.Python代码
import cv2
import numpy as np
import math
class anisodiff2D(object):
def __init__(self, num_iter=5, delta_t=1/7, kappa=30, option=2):
super(anisodiff2D, self).__init__()
self.num_iter = num_iter
self.delta_t = delta_t
self.kappa = kappa
self.option = option
self.hN = np.array([[0, 1, 0], [0, -1, 0], [0, 0, 0]])
self.hS = np.array([[0, 0, 0], [0, -1, 0], [0, 1, 0]])
self.hE = np.array([[0, 0, 0], [0, -1, 1], [0, 0, 0]])
self.hW = np.array([[0, 0, 0], [1, -1, 0], [0, 0, 0]])
self.hNE = np.array([[0, 0, 1], [0, -1, 0], [0, 0, 0]])
self.hSE = np.array([[0, 0, 0], [0, -1, 0], [0, 0, 1]])
self.hSW = np.array([[0, 0, 0], [0, -1, 0], [1, 0, 0]])
self.hNW = np.array([[1, 0, 0], [0, -1, 0], [0, 0, 0]])
def fit(self, img):
diff_im = img.copy()
dx = 1; dy = 1; dd = math.sqrt(2)
for i in range(self.num_iter):
nablaN = cv2.filter2D(diff_im, -1, self.hN)
nablaS = cv2.filter2D(diff_im, -1, self.hS)
nablaW = cv2.filter2D(diff_im, -1, self.hW)
nablaE = cv2.filter2D(diff_im, -1, self.hE)
nablaNE = cv2.filter2D(diff_im, -1, self.hNE)
nablaSE = cv2.filter2D(diff_im, -1, self.hSE)
nablaSW = cv2.filter2D(diff_im, -1, self.hSW)
nablaNW = cv2.filter2D(diff_im, -1, self.hNW)
cN = 0; cS = 0; cW = 0; cE = 0; cNE = 0; cSE = 0; cSW = 0; cNW = 0
if self.option == 1:
cN = np.exp(-(nablaN/self.kappa)**2)
cS = np.exp(-(nablaS/self.kappa)**2)
cW = np.exp(-(nablaW/self.kappa)**2)
cE = np.exp(-(nablaE/self.kappa)**2)
cNE = np.exp(-(nablaNE/self.kappa)**2)
cSE = np.exp(-(nablaSE/self.kappa)**2)
cSW = np.exp(-(nablaSW/self.kappa)**2)
cNW = np.exp(-(nablaNW/self.kappa)**2)
elif self.option == 2:
cN = 1/(1+(nablaN/self.kappa)**2)
cS = 1/(1+(nablaS/self.kappa)**2)
cW = 1/(1+(nablaW/self.kappa)**2)
cE = 1/(1+(nablaE/self.kappa)**2)
cNE = 1/(1+(nablaNE/self.kappa)**2)
cSE = 1/(1+(nablaSE/self.kappa)**2)
cSW = 1/(1+(nablaSW/self.kappa)**2)
cNW = 1/(1+(nablaNW/self.kappa)**2)
diff_im = diff_im + self.delta_t * (
(1/dy**2)*cN*nablaN +
(1/dy**2)*cS*nablaS +
(1/dx**2)*cW*nablaW +
(1/dx**2)*cE*nablaE +
(1/dd**2)*cNE*nablaNE +
(1/dd**2)*cSE*nablaSE +
(1/dd**2)*cSW*nablaSW +
(1/dd**2)*cNW*nablaNW
)
return diff_im
3.实验结果展示
-
背景复杂,过度曝光,全部作为热量高的区域(保护一下隐私哈~本人太丑哈哈哈)
-
背景简单 (本人对图片先进行了轮廓检测提取前景目标)
-
其实我的目的只是想实现这篇论文中的思想:
论文注明:曾华前辈的论文,(懒得写字,就截图了)