论坛项目-3-过滤敏感词

本文详细介绍了如何使用前缀树(Trie树)实现敏感词过滤器。首先,通过定义TrieNode类构建前缀树的数据结构,然后初始化前缀树并加载敏感词。接着,实现过滤敏感词的方法,有效地处理文本中的敏感词汇,同时排除特殊字符的干扰。整个过程高效且精确,适用于文本审查和内容过滤场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、敏感词过滤器

  • 前缀树
    • 名称:Trie、字典树、查找树
    • 特点:查找效率高,消耗内存大
    • 应用:字符串检索、词频统计、字符串排序等
  • 敏感词过滤器
    • 定义前缀树
    • 根据敏感词,初始化前缀树
    • 编写过滤敏感词的方法

======================================
根节点空,其他节点只包含一个字符。
从根节点到某节点,连起来的每个路径,就是当前节点的字符串
子节点不能和该节点相同
敏感词:到最末节点的是敏感词

敏感词构成一个前缀树
在这里插入图片描述
3个指针:2指针一直往前走,3指针往返
StringBuilder:记录非敏感词
在这里插入图片描述

2、前缀树

1.定义前缀树
前缀树数据结构,util包下SensitiveFilter.java
前缀树的定义只在过滤敏感词当中用到,故将其定义为一个内部类

//前缀树
    private class TrieNode{
        //关键词结束标识
        private boolean isKeywordEnd = false;
        //当前节点的子节点(key是下级字符,value是下级节点)
        private Map<Character,TrieNode> subNodes = new HashMap<>();
        public boolean isKeywordEnd() {
            return isKeywordEnd;
        }
        public void setKeywordEnd(boolean keywordEnd) {
            isKeywordEnd = keywordEnd;
        }
        //添加子节点
        public void addSubNode(Character c,TrieNode node){
            subNodes.put(c,node);
        }
        //获取子节点
        public TrieNode getSubNode(Character c){
            return subNodes.get(c);
        }
    }

上述定义最妙的是,属性当中子节点的定义方式private Map<Character,TrieNode> subNodes = new HashMap<>();,直接形成了树的结构,值得细品。

3、敏感词过滤器

2、根据敏感词,初始化前缀树
2.1 定义敏感词
先写一个文本文件sensitive-words.txt用来定义敏感词(也可以存储在数据库中,这里存储在文本文件里面)
2.2 初始化前缀树

@PostConstruct
    public void init(){
        try(
              InputStream is = this.getClass().getClassLoader().getResourceAsStream("sensitive-words.txt");
              BufferedReader reader = new BufferedReader(new InputStreamReader(is));
              ){
            String keyword;
            while((keyword = reader.readLine()) != null){
                //添加到前缀树
                this.addKeyword(keyword);
            }
        }catch(IOException e){
            logger.error("加载敏感词文件失败!" + e.getMessage());
        }
    }

添加@PostConstruct注解使其在构造方法执行前就完成加载
编写将一个敏感词添加到前缀树中的方法

//将一个敏感词添加到前缀树中
    private void addKeyword(String keyword){
        TrieNode tempNode = rootNode;
        for(int i=0;i<keyword.length();i++){
            char c = keyword.charAt(i);
            TrieNode subNode = tempNode.getSubNode(c);
            if(subNode == null){
                //初始化子节点
                subNode = new TrieNode();
                tempNode.addSubNode(c,subNode);
            }
            //指向子节点进入下一循环
            tempNode = subNode;
            //设置结束标识
            if(i == keyword.length()-1){
                tempNode.setKeywordEnd(true);
            }
        }
    }

3、编写过滤敏感词的方法

/**
     * 过滤敏感词
     * @param text 待过滤文本
     * @return 过滤后文本
     */
    public String filter(String text){
        if(StringUtils.isBlank(text)){
            return null;
        }
        //指针1
        TrieNode tempNode = rootNode;
        //指针2
        int begin = 0;
        //指针3
        int position = 0;
        //结果
        StringBuilder sb = new StringBuilder();
        while(position < text.length()){
            char c = text.charAt(position);
            if(isSymbol(c)){
                //若指针1指向根节点,则将此符号计入结果,指针2向下走一步
                if(tempNode == rootNode){
                    sb.append(c);
                    begin++;
                }
                //无论符号在开头或中间,指针3都向下走一步
                position++;
                continue;
            }
            //检查下级节点
            tempNode = tempNode.getSubNode(c);
            if(tempNode == null){
                //以begin开头的字符串不是敏感词
                sb.append(text.charAt(begin));
                position = ++begin;
                //重新指向根节点
                tempNode = rootNode;
            }else if(tempNode.isKeywordEnd){
                //发现敏感词,将begin-position字符串替换掉
                sb.append(REPLACEMENT);
                begin = ++position;
                //重新指向根节点
                tempNode = rootNode;
            }else{
                //检查下一个字符
                position++;
            }
        }
        //将最后一批字符计入结果
        sb.append(text.substring(begin));
        return  sb.toString();
    }

上述过滤方法排除了特殊符号的干扰,当中涉及的判断是否为特殊字符的方法如下:

//判断是否为符号
    private boolean isSymbol(Character c){
        //0x2E80-0x9FFF是东亚文字范围
        return !CharUtils.isAsciiAlphanumeric(c) && (c < 0x2E80 || c > 0x9FFF);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值