1、敏感词过滤器
- 前缀树
- 名称:Trie、字典树、查找树
- 特点:查找效率高,消耗内存大
- 应用:字符串检索、词频统计、字符串排序等
- 敏感词过滤器
- 定义前缀树
- 根据敏感词,初始化前缀树
- 编写过滤敏感词的方法
======================================
根节点空,其他节点只包含一个字符。
从根节点到某节点,连起来的每个路径,就是当前节点的字符串
子节点不能和该节点相同
敏感词:到最末节点的是敏感词
敏感词构成一个前缀树
3个指针:2指针一直往前走,3指针往返
StringBuilder:记录非敏感词
2、前缀树
1.定义前缀树
前缀树数据结构,util包下SensitiveFilter.java
前缀树的定义只在过滤敏感词当中用到,故将其定义为一个内部类
//前缀树
private class TrieNode{
//关键词结束标识
private boolean isKeywordEnd = false;
//当前节点的子节点(key是下级字符,value是下级节点)
private Map<Character,TrieNode> subNodes = new HashMap<>();
public boolean isKeywordEnd() {
return isKeywordEnd;
}
public void setKeywordEnd(boolean keywordEnd) {
isKeywordEnd = keywordEnd;
}
//添加子节点
public void addSubNode(Character c,TrieNode node){
subNodes.put(c,node);
}
//获取子节点
public TrieNode getSubNode(Character c){
return subNodes.get(c);
}
}
上述定义最妙的是,属性当中子节点的定义方式private Map<Character,TrieNode> subNodes = new HashMap<>();,直接形成了树的结构,值得细品。
3、敏感词过滤器
2、根据敏感词,初始化前缀树
2.1 定义敏感词
先写一个文本文件sensitive-words.txt用来定义敏感词(也可以存储在数据库中,这里存储在文本文件里面)
2.2 初始化前缀树
@PostConstruct
public void init(){
try(
InputStream is = this.getClass().getClassLoader().getResourceAsStream("sensitive-words.txt");
BufferedReader reader = new BufferedReader(new InputStreamReader(is));
){
String keyword;
while((keyword = reader.readLine()) != null){
//添加到前缀树
this.addKeyword(keyword);
}
}catch(IOException e){
logger.error("加载敏感词文件失败!" + e.getMessage());
}
}
添加@PostConstruct注解使其在构造方法执行前就完成加载
编写将一个敏感词添加到前缀树中的方法
//将一个敏感词添加到前缀树中
private void addKeyword(String keyword){
TrieNode tempNode = rootNode;
for(int i=0;i<keyword.length();i++){
char c = keyword.charAt(i);
TrieNode subNode = tempNode.getSubNode(c);
if(subNode == null){
//初始化子节点
subNode = new TrieNode();
tempNode.addSubNode(c,subNode);
}
//指向子节点进入下一循环
tempNode = subNode;
//设置结束标识
if(i == keyword.length()-1){
tempNode.setKeywordEnd(true);
}
}
}
3、编写过滤敏感词的方法
/**
* 过滤敏感词
* @param text 待过滤文本
* @return 过滤后文本
*/
public String filter(String text){
if(StringUtils.isBlank(text)){
return null;
}
//指针1
TrieNode tempNode = rootNode;
//指针2
int begin = 0;
//指针3
int position = 0;
//结果
StringBuilder sb = new StringBuilder();
while(position < text.length()){
char c = text.charAt(position);
if(isSymbol(c)){
//若指针1指向根节点,则将此符号计入结果,指针2向下走一步
if(tempNode == rootNode){
sb.append(c);
begin++;
}
//无论符号在开头或中间,指针3都向下走一步
position++;
continue;
}
//检查下级节点
tempNode = tempNode.getSubNode(c);
if(tempNode == null){
//以begin开头的字符串不是敏感词
sb.append(text.charAt(begin));
position = ++begin;
//重新指向根节点
tempNode = rootNode;
}else if(tempNode.isKeywordEnd){
//发现敏感词,将begin-position字符串替换掉
sb.append(REPLACEMENT);
begin = ++position;
//重新指向根节点
tempNode = rootNode;
}else{
//检查下一个字符
position++;
}
}
//将最后一批字符计入结果
sb.append(text.substring(begin));
return sb.toString();
}
上述过滤方法排除了特殊符号的干扰,当中涉及的判断是否为特殊字符的方法如下:
//判断是否为符号
private boolean isSymbol(Character c){
//0x2E80-0x9FFF是东亚文字范围
return !CharUtils.isAsciiAlphanumeric(c) && (c < 0x2E80 || c > 0x9FFF);
}