HDU - 3830 Checkers【思维+LCA】

传送门

Problem Description

Little X, Little Y and Little Z are playing checkers when Little Y is annoyed. So he wants to make the chessboard much bigger. Although Little Z insists the original version, Little X stands by Little Y. After they enlarge the chessboard, the chessboard turns to an infinite line.
The chessboard is like the Number Axes now, with each integer point able to hold a checker. At initial status there are three checkers on three different integer points , and through the game there always are three checkers. Every time, they can choose a checker A to jump across a pivot checker B to a new position(but the distance between old A and B equals to new A and B, and there should be no other checkers except B in the range [old A, new A]).
After playing for a while, they wonder whether an given status a,b,c can be transferred to x,y,z. obeying the rules. Since the checkers are considered the same, it is unnecessary for a must jump to x.

Input
The first line is a,b,c.
The second line is x,y,z.
They are all integers in range (-10^9, 10^9) and the two status are valid.

Output
The first line is YES or NO, showing whether the transfer can be achieved.
If it is YES, then output the least steps in the second line.


这道题的思路也太难想到了吧,一开始还以为是数学题,居然利用LCA的思想求解的。。。

具体解析博客:http://www.cnblogs.com/scau20110726/archive/2013/06/14/3135024.html

代码:

 

///#include<bits/stdc++.h>
///#include<unordered_map>
///#include<unordered_set>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<set>
#include<stack>
#include<map>
#include<new>
#include<vector>
#define MT(a,b) memset(a,b,sizeof(a));
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pai=acos(-1.0);
const double E=2.718281828459;
const ll mod=1e9+7;
const int INF=0x3f3f3f3f;

struct node
{
    ll p[4];
    ll depth;
}a,b,root_a,root_b;

bool judge(node x,node y)
{
    if(x.p[1]==y.p[1]&&x.p[2]==y.p[2]&&x.p[3]==y.p[3])
        return true;
    return false;
}

node find_root(node &x)
{
    node ans=x;
    ans.depth=0;
    while(abs(ans.p[1]-ans.p[2])!=abs(ans.p[3]-ans.p[2]))
    {
        ll left=abs(ans.p[1]-ans.p[2]);
        ll right=abs(ans.p[3]-ans.p[2]);
        if(left>right)
        {
            ll mul=(left-1)/right;
            x.depth+=mul;
            ans.p[2]-=mul*right;
            ans.p[3]-=mul*right;
        }
        else
        {
            ll mul=(right-1)/left;
            x.depth+=mul;
            ans.p[1]+=mul*left;
            ans.p[2]+=mul*left;
        }
    }
    return ans;
}

void jump(node &x,ll depth)
{
    ll cnt=0;
    while(cnt<depth)
    {
        ll left=abs(x.p[1]-x.p[2]);
        ll right=abs(x.p[3]-x.p[2]);
        ll sub=depth-cnt;
        if(left>right)
        {
            ll mul=(left-1)/right;
            ll minn=min(mul,sub);
            x.p[2]-=minn*right;
            x.p[3]-=minn*right;
            cnt+=minn;
        }
        else
        {
            ll mul=(right-1)/left;
            ll minn=min(mul,sub);
            x.p[1]+=minn*left;
            x.p[2]+=minn*left;
            cnt+=minn;
        }
    }
    x.depth-=depth;
}

ll solve()
{
    node x,y;
    ll l=0,r=a.depth;
    ll ans=0;
    while(l<=r)///二分 向上跳跃的距离
    {
        ll mid=(l+r)>>1;
        x=a;
        y=b;
        jump(x,mid);
        jump(y,mid);
        if(judge(x,y))
        {
            ans=mid;
            r=mid-1;
        }
        else
            l=mid+1;
    }
    return ans;
}
void init()
{
    a.depth=b.depth=0;
    sort(a.p+1,a.p+4);
    sort(b.p+1,b.p+4);
}

int main()
{
    while(cin>>a.p[1]>>a.p[2]>>a.p[3])
    {
        cin>>b.p[1]>>b.p[2]>>b.p[3];
        init();///初始化
        ///两种状态的根
        root_a=find_root(a);
        root_b=find_root(b);
        if(!judge(root_a,root_b))
            printf("NO\n");
        else
        {
            ///将两种状态的深度调成一致
            ll add=abs(a.depth-b.depth);
            if(a.depth>b.depth)
                jump(a,add);
            else
                jump(b,add);
            ///二分
            ll res=solve();
            printf("YES\n%lld\n",res*2+add);
        }
    }
    return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值