acwing算法基础课:最短路算法(floyd算法)

floyd算法模版

时间复杂度是 O(n3), n表示点数

初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

例题

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输"impossible”。
数据保证图中不存在负权回路。

#include <iostream>
#include <cstring>

using namespace std;

const int N = 110, INF = 1e9;

int n, m, k;
int d[N][N];

void floyd()
{
	for(int k = 1; k <= n; k++)
		for(int i = 1; i <= n; i++)
			for(int j = 1; j <= n; j++)
				d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main()
{
	cin >> n >> m >> k;
	
	for(int i = 1; i <= n; i++)
		for(int j = 1; j <= n; j++)
			if(i == j) d[i][j] = 0;
			else d[i][j] = INF;
	
	while(m--)
	{
		int a, b, c;
		cin >> a >> b >> c;
		d[a][b] = min(d[a][b], c); 
	}
	
	floyd();
	
	while(k--)
	{
		int a, b;
		cin >> a >> b;
		if(d[a][b] > INF / 2) cout << "impossible" << endl;
		else cout << d[a][b];
	}
	
	return 0;
}

测试样例

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值