代码随想录算法训练营day12|二叉树理的递归遍历和迭代遍历
二叉树的遍历方式
两种主要遍历方式:
- 深度优先遍历
①前序遍历(递归法,迭代法)
②中序遍历(递归法,迭代法)
③后序遍历(递归法,迭代法)
- 广度优先遍历
层次遍历(迭代法)
深度优先遍历的三个顺序指的是中间结点的遍历顺序。
通常使用递归的方式实现深度优先遍历,使用队列实现广度优先遍历(需要先进先出)。
二叉树的定义
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
二叉树的递归遍历
前序遍历:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec) {
if(cur == NULL) return;
vec.push_back(cur->val); //中
traversal(cur->left, vec); //左
traversal(cur->right, vec); //右
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
后序遍历:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec) {
if(cur == NULL) return;
traversal(cur->left, vec); //左
travaesal(cur->right, vec); //右
vec.push_back(cur->val); //中
}
vector<int> latorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
中序遍历:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec) {
if(cur == NULL) return;
traversal(cur->left, val); //左
vec.push_back(cur->val); //中
traversal(cur->right, val); //右
}
vector<int> midorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
二叉树的迭代遍历
迭代法中序遍历
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node->right) st.push(node->right); // 添加右节点(空节点不入栈)
st.push(node); // 添加中节点
st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。
if (node->left) st.push(node->left); // 添加左节点(空节点不入栈)
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.top(); // 重新取出栈中元素
st.pop();
result.push_back(node->val); // 加入到结果集
}
}
return result;
}
};
迭代法前序遍历
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左
st.push(node); // 中
st.push(NULL);
} else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};
迭代法后序遍历
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
st.push(node); // 中
st.push(NULL);
if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左
} else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};