自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 pd.read_csv 的几个参数

我的结论是 直接当场试一试就好了 记不住的 太特么纯了也就是None 和 0 这俩不满意就试一试好了header默认情况下为0 会把第一行作为表头如果header =None 表头直接弄成0 1dataset = pd.read_csv(filename, sep=';', nrows=5) dataset1 = pd.read_csv(filename, sep=';', nrows=5, header=0)dataset2 = pd.read_csv(fil

2021-11-05 17:16:02 857

原创 pmdarima中的pipeline和autoarima

最近一段时间在学习时间序列,其中用到了pdmarima这个库,做了一些简单的笔记。在传统的时间序列分析中,我们需要对数据进行平稳化处理(包括差分、取对数)还要进行白噪声检验,定阶后才能进行时间序列分析预测等等,而使用pmdarima函数可以直接对原始数据进行处理,可以说是BUG级别的存在,但是关于哪种方法的准确性更好,我还没有得到结论。这里只介绍其中两个函数pipeline和autoarimaimport numpy as npimport pmdarima as pmfrom pm.

2021-10-28 14:18:03 1126 1

原创 一阶差分如何还原

import pandas as pdimport numpy as nparr = np.arange(10)np.random.shuffle(arr)arr = pd.Series(arr)print('arr:')print(arr)d1 = arr.diff()print('d1')print(d1)d1_cumsum = d1.cumsum()# 如何 根据d1 求arrprint('d1_cumsum')print(d1_cumsum)#print(arr.il.

2021-10-26 16:28:54 3695

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除