经典算法之——辗转相除法

这篇博客介绍了如何使用欧几里得算法计算两个整数的最大公约数(GCD)。通过设置变量u和v分别为32和26,不断更新它们的值,直到v为0,此时u即为最大公约数。这个过程涉及到了取模、交换变量等操作,最终通过printf函数输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

int u=32;
int v=26;
while(v!=0)
{
    int temp=u%v;
    u=v;
    v=temp;
}
printf("%d",u);

  1. 如果V=0,计算结束,u就是最大公约数;
  2. 如果V不等于0,那么计算u除以v的余数,让u等于v,而v等于那个余数;
  3. 回到第一步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值