给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1]
输出: 0
方法:动态规划
思路与算法
我们用 f[i]表示第 i 天结束之后的「累计最大收益」。根据题目描述,由于我们最多只能同时买入(持有)一支股票,并且卖出股票后有冷冻期的限制,因此我们会有三种不同的状态:
1、我们目前持有一支股票,对应的「累计最大收益」记为 f[i][0]f[i][0];
2、我们目前不持有任何股票,并且处于冷冻期中,对应的「累计最大收益」记为 f[i][1]f[i][1];
3、我们目前不持有任何股票,并且不处于冷冻期中,对应的「累计最大收益」记为 f[i][2]f[i][2]。
这里的「处于冷冻期」指的是在第 ii 天结束之后的状态。也就是说:如果第 ii天结束之后处于冷冻期,那么第 i+1天无法买入股票。
代码实现:
class Solution {
public int maxProfit(int[] prices) {
if(prices == null || prices.length == 0){
return 0;
}
int n = prices.length;
//f[i][0]:代表手上持有股票的最大收益
//f[i][1]:代表手上不持有股票,并且处于冷冻期中的累计最大收益
//f[i][2]:代表手上不持有股票,并且不在冷冻期中的累计最大收益
int[][] f = new int[n][3];
f[0][0] = -prices[0];//负收益
for(int i = 1; i < n; i++){
f[i][0] = Math.max(f[i-1][0],f[i-1][2] - prices[i]);
f[i][1] = f[i-1][0] -(- prices[i]);
f[i][2] = Math.max(f[i-1][1],f[i-1][2]);
}
return Math.max(f[n-1][1],f[n-1][2]);
}
}