给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
题目解析:本题有两种解法,可以暴力遍历也可以二分。由于时间复杂度有要求,所以用二分查找分别查找左边界和右边界。很多人对left和right迷糊,所以直接输出flag就好啦。
class Solution {
public int[] searchRange(int[] nums, int target) {
return new int[] {leftBound(nums,target),rightBound(nums,target)};
}
int leftBound( int[] nums, int target){
int left = 0, right = nums.length, flag = -1;
while(left < right){
int mid = left + (right - left)/2;
if (nums[mid] == target){
flag = right = mid;
}
else if (nums[mid] > target)
right = mid;
else if (nums[mid] < target)
left = mid + 1;
}
return flag;
}
int rightBound(int[] nums, int target){
int left = 0, right = nums.length,flag = -1;
while(left < right){
int mid = left + (right - left)/2;
if (nums[mid] == target){
left = mid + 1;
flag = mid;
}
else if (nums[mid] > target)
right = mid;
else if (nums[mid] < target)
left = mid + 1;
}
return flag;
}
}

该问题要求在时间复杂度为O(logn)内找到目标值在非递减数组中的开始和结束位置。通过二分查找算法,分别计算左边界和右边界,对于左边界,当找到等于目标值的元素时更新右边界,对于右边界则更新左边界。若未找到目标值,则返回[-1,-1]。

被折叠的 条评论
为什么被折叠?



