推荐系统
Katniss的名字被占用
这个作者很懒,什么都没留下…
展开
-
推荐系统之Wide&Deep
Wide&Deep文章目录 Wide&Deep一、思维框架二、正文一、思维框架二、正文原创 2020-10-27 16:37:09 · 235 阅读 · 0 评论 -
task 03
一、矩阵分解二、FM原创 2020-10-25 20:27:48 · 86 阅读 · 0 评论 -
推荐系统之FM
推荐系统之FM文章目录推荐系统之FM1. FM模型的引入1.1 逻辑回归模型及其缺点1.2 二阶交叉项的考虑及改进2. FM公式理解3. FM模型应用四、代码时间4.1 调包1. FM模型的引入1.1 逻辑回归模型及其缺点FM模型其实是一种思路,具体的应用稍少。一般来说做推荐CTR预估时最简单的思路就是将特征做线性组合(逻辑回归LR),传入sigmoid中得到一个概率值,本质上这就是一个线性模型,因为sigmoid是单调增函数不会改变里面的线性模型的CTR预测顺序,因此逻辑回归模型效果会比较差。也就原创 2020-10-25 20:25:51 · 521 阅读 · 1 评论 -
推荐系统之矩阵分解
矩阵分解文章目录矩阵分解一、隐语义模型二、矩阵分解算法的原理三、矩阵分解算法求解四、Basic SVD五、编程实现六、课后思考七、参考资料一、隐语义模型核心思想:通过隐含特征(latent factor)联系用户兴趣和物品(item), 基于用户的行为找出潜在的主题和分类, 然后对item进行自动聚类,划分到不同类别/主题(用户的兴趣)。从数据出发,进行个性化推荐用户和物品之间有着隐含的联系隐含因子让计算机理解就好将用户和物品通过中间隐含因子联系起来其实就是矩阵分解的模式,隐含的方程就是原创 2020-10-25 16:59:17 · 609 阅读 · 0 评论 -
Task 02:协同过滤
Task 02:协同过滤文章目录 Task 02:协同过滤一、协同过滤算法简介1. 基本思想2. 两种基于邻域方法的算法二、相似性度量方法1. 杰卡德(Jaccard)相似系数2. 余弦相似度3.皮尔森相关系数三、基于用户的协同过滤1. 思想:四、UserCF算法编程实现五、UserCF优缺点六、基于物品的协同过滤七、算法评估八、协同过滤算法权重改进九、协同过滤算法问题分析十、思考十一、 参考资料一、协同过滤算法简介协同过滤(Collaborative Filtering)推荐算法是最经典、最常用的.原创 2020-10-22 22:56:32 · 319 阅读 · 0 评论 -
推荐系统之概述
推荐系统之概述文章目录推荐系统之概述一、简介1. What2. Why3. Who二、 常用评测指标1. 用户满意度2. 预测准确度1. 评分预测2. TopN推荐3. 覆盖率信息熵定义覆盖率基尼系数定义覆盖率4. 多样性5. 新颖性6. AUC曲线三、召回1. 召回层在推荐系统架构中的位置及作用2. 多路召回策略3. Embedding召回四、课后思考一、简介1. What用户:推荐系统是一种帮助用户快速发现有用信息的工具;公司:推荐系统是一种增加公司产品与用户接触,购买等行为概率的工具。原创 2020-10-19 17:14:59 · 263 阅读 · 1 评论