布隆过滤器(Bloom Filter)是非常经典的,以空间换时间的算法。布隆过滤器由布隆在 1970 年提出。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
布隆过滤器的原理
布隆过滤器的实现原理是一个超大的位数组和几个哈希函数。假设位数组的长度为 m,哈希函数的个数为 k。
解析上图,具体的操作流程:假设集合里面有 3 个元素 {x, y, z},哈希函数的个数为 3。首先将位数组进行初始化,初始化状态的维数组的每个位都设置位 0。对于集合里面的每一个元素,将元素依次通过 3 个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为 1。查询某元素是否存在集合中的时,用同样的方法将 W 通过哈希映射到位数组上的 3 个点。如果 3 个点中任意一个点不为 1,则可以判断该元素一定不存在集合中。反之,如果 3 个点都为 1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率,这一点从图中就能得知:假设某个元素通过映射对应下标为 4、5、6 这 3 个点。虽然这 3 个点都为 1,但是很明显这 3 个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是 1,这是误判率存在的原因。
布隆过滤器添加和查询元素
添加元素
将要添加的元素分别通过k个哈希函数计算得到k个哈希值,这k个hash值对应位数组上的k个位置,然后将这k个位置设置为1。
查询元素
将要查询的元素分别通过k个哈希函数计算得到k个哈希值,这k个hash值对应位数组上的k个位置,如果这k个位置中有一个位置为0,则此元素一定不存在集合中,如果这k个位置全部为1,则这个元素可能存在。
假阳性率
所谓假阳性率就是本来在集合中不存在的元素,被判定为存在的概率。
假阳性是BF最大的痛点,因此有必要权衡,比如计算一下假阳性的概率。为了简单一点,就假设我们的哈希函数选择位数组中的比特时,都是等概率的。当然在设计哈希函数时,也应该尽量满足均匀分布。
在位数组长度m的BF中插入一个元素,它的其中一个哈希函数会将某个特定的比特置为1。因此,在插入元素后,该比特仍然为0的概率是:
现有k个哈希函数,并插入n个元素,自然就可以得到该比特仍然为0的概率是:
反过来讲,它已经被置为1的概率就是:
也就是说,如果在插入n个元素后,我们用一个不在集合中的元素来检测,那么被误报为存在于集合中的概率(也就是所有哈希函数对应的比特都为1的概率)为:
当n比较大时,根据重要极限公式,可以近似得出假阳性率:
因此,可以得出如下结论,在哈希函数的个数k一定的情况下:
位数组长度m越大,假阳性率越低
已插入元素的个数n越大,假阳性率越高
如何选择适合业务的 k 和 m 值呢,直接贴一个公式:
布隆过滤器的优缺点
优点
相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数(即hash函数的个数)
Hash 函数相互之间没有关系,方便由硬件并行实现
布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势
布隆过滤器可以表示全集,其它任何数据结构都不能。
缺点
但是布隆过滤器的缺点和优点一样明显:
误算率(False Positive)是其中之一。随着存入的元素数量增加,误算率随之增加(误判补救方法是:再建立一个小的白名单,存储那些可能被误判的信息)。但是如果元素数量太少,则使用散列表足矣。
一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加 1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。