自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(63)
  • 资源 (2)
  • 收藏
  • 关注

原创 ISP(图像信号处理)之3A算法

一、关于高通平台AEC调试的几点认识平台通过I2C来下发控制命令,然后sensor相应以后输出相应的MIPI数据,然后平台检测输出的数据以后开始处理帧数据。平台对于sensor的交互控制只做三件事:sensor初始化寄存器的配置,sensorAE信息的下发以及帧数据的校验。平台在获取到sensor的帧数据以后,会逐步的过ISP的各个算法,在AEC的统计计算以后,平台会针对于当前的帧数据以及调试的参数会生生成新的exposure与gain,然后下发给sensor,使sensor在后续的出帧中...

2020-09-08 14:29:47 2234 1

转载 ISP(图像信号处理)之Bayer Raw 简介

ISP(图像信号处理)之Bayer Raw 简介浏览很多博客之后从各个博主处得到的全方位理解,一一列出来,用于从不同方向理解Bayer。拜耳阵列是实现CCD 或CMOS 传感器拍摄彩色图像的主要技术之一。它是一个4×4阵列,由8个绿色、4个蓝色和4个红色像素组成,在将灰度图形转换为彩色图片时会以2×2矩阵进行9次运算,最后生成一幅彩色图形。RAW DATA,可以理解为:RAW图像就是CMO...

2019-11-05 19:33:58 7647 3

转载 ISP(图像信号处理)学习笔记

概念ISP(Image Signal Processor),即图像信号处理器。DSP(Data Signal Processor),即数字信号处理器ISP的主要作用是对前端图像传感器输出的信号做后期处理,主要功能有线性纠正、噪声去除、坏点去除、内插、白平衡、自动曝光控制等。ISP一般用来处理Image Sensor(图像传感器)的输出数据,如做AEC(自动曝光控制)、AGC(自动增益控...

2019-11-05 16:10:30 5774

原创 MATLAB关于VIF视觉保真度的代码

MATLAB关于VIF视觉保真度的代码

2022-04-20 15:58:00 221

原创 MATLAB批量求图片均值、相对标准差、平均梯度、信息熵的代码

MATLAB批量处理某一文件夹下的图片,并求其信息熵

2022-04-19 17:40:13 2446 1

原创 关于HDR的学习笔记

关于HDR的学习笔记,HDR分为sensorHDR和imageHDR

2022-04-06 14:04:31 64

原创 关于sensor sensitivity的学习

sensor性能

2022-03-27 20:02:56 425

原创 图像的匹配、配准、融合、拼接等概念的区别

名词区分

2022-01-18 14:50:52 351

原创 MTK平台camera相关配置文件学习

2021-11-01 17:29:47 185

原创 图像配准(image registration)与图像融合(image fusion)

在ISP多帧图像降噪过程中第一步就是对采集到的n帧图像进行帧间配准,然后根据各帧的像素值进行时域噪声判断。正确的配准是准确判断时域噪声的关键,否则会因为误判造成去噪过多或去噪不够的问题。而且帧间配准出现问题会导致图像简单叠加融合时出现重影现象。图像配准是图像融合的基础操作。1.图像配准1.1图像配准的概念1.2图像配准的方法及分类1.3图像配准的流程1.4举例代码2.图像融合2.1 图像融合的概念2.2 图像融合的方法及分类2.3 简单图像融合的举例代码...

2021-09-09 20:28:49 4441

原创 小波学习笔记(相关性去噪)

信号小波系数的上下层之间有强相关性,而噪声没有这种相关性。相关性去噪的原理就是基于这种相关性的。相关性去噪原理为比较每一层每一个位置的归一化的相关系数,从相关性的大小判断是信号还是噪声控制的点。具体步骤为:1.给定分解层数M,选取小波函数,计算带噪信号的每一层的小波系数2.比较和,判断若,则认为大相关量对应信号的特征,取=,置=0;若,则认为点K处的小波系数由噪声控制,保留,置=03.在每一个尺度上重新计算4.重复上面的过程5.所取中各对应由信号控制的点,而中点全部对应.

2021-07-19 15:12:55 885

原创 信息熵(entropy)以及图像信息熵的理解

关于信息熵,参考以下博文内容进行了理解:https://blog.csdn.net/saltriver/article/details/53056816https://y1ran.blog.csdn.net/article/details/80559531

2021-07-19 14:52:00 1380

原创 sensor的高像素和大像素优劣分析

CMOS sensor的光电转换器称为像素,按照矩阵的方式排列。高像素是指在相同面积的sensor上排列的像素个数很多,大像素是指在相同面积的sensor上单个像素所占的面积比大。高像素优势:由于分辨率更高,对于可放大尺寸的图像来说,清晰度高。大像素优势:由于单个像素所占面积大,接受的光通量越多,亮度增强,适合大的动态范围拍照,包括黑夜拍照、阳光下更清晰。https://baijiahao.baidu.com/s?id=1673969980768676820&wfr=spider&a

2021-07-12 20:08:43 518

原创 小波学习笔记——阈值去噪法

阈值去噪法是指首先对含噪信号进行小波分解,对小波系数进行阈值处理,即对于大于(或小于)某阈值的小波系数进行处理,再利用处理后的结构重构原信号。其中最关键的是阈值函数的选取和阈值T的估计有三种方法:法一:小波变换后,在小尺度上具有较高的中心频率,因此小尺度的变换值集中反映了信号高频部分的能量,基于此来估计噪声方差。法二:用前两个尺度的小波系数相乘得到修正的小波系数,进而估计噪声方差。法三:图像中噪声方差的估计,平坦的地方进行统计噪声方差。噪声的模拟,可以采用高斯噪声,或者均匀噪声、椒盐噪声

2021-07-01 19:28:21 2087

原创 小波学习笔记——模极大值去噪

模极大值去噪算法步骤:1.对含噪信号进行尺度为,J=1,2,......,J的小波变换,并求出每个尺度上变换系数的模极大值。2.从最大尺度开始,确定一个阈值T,把该尺度上模极大值小于T的极值点去掉,保留其他的,得到最大尺度上的一组新的模极大值点。3.作出尺度函数j=J上保留的每个极大值点的一个邻域,如N(t,s),在J-1尺度上找出与邻域,在J-1尺度上找出与邻域N(t,s)内的极值点相对应的传播点(极值点),保留这些极值点,去掉其他极值点,从而得到j-1尺度上的一组新极值点。4.置j=j-

2021-07-01 19:04:45 1909 2

原创 sensor driver学习笔记

以前听前辈讲过一部分,现在通过阅读高通文档又补充了一部分内容,在此记录,防止遗忘。也分享给需要的朋友们。

2021-05-26 13:30:15 188

原创 小波学习笔记(图像的分解与重构)——MATLAB

MATLAB实现图像的分解和重构命令有两种:第一种是一层小波分解dwt2[CA,CH,CV,CD]=dwt2(X,'wname');其中,dwt2表示离散小波变换;X为输入参数,是图像;'wname'是小波名字;输出变量CA为低低频分解信息,刻画原始图像的逼近信息;CH为低高频分解信息,刻画原始图像的横向细节;CV为高低频分解信息,刻画原始图像的垂直细节;CD为高高频分解信息,刻画原始图像的对角线上的细节。[CA,CH,CV,CD]=dwt2(X,Lo_D,Hi_D);输入参数还可以是低

2021-05-13 17:15:28 3192 3

原创 小波学习笔记(信号分解与重构)——MATLAB

一维信号分解命令:idwt,其实现原理为Mallat算法%----------Mallat算法和重构算法实现与MATLAB自带函数进行对比---------------%[Lo_D,Hi_D,Lo_R,Hi_R]=wfilters('db3');h=Lo_D;%hn=dbfilter(3);%A=-1.*ones(1.length(hn));%B=cumprod(A);%累计积实现了(-1)^n的操作%gn=(-1).*B.*fliplr(hn);%fliplr命令使低通滤波器反序,即实现

2021-05-07 16:24:08 1451 1

原创 小波学习笔记——MATLAB

使用MATLAB进行小波的学习,学习小波分解、小波重构、尺度函数、小波函数等实现过程1.db3小波器的提取2.对一维信号进行小波滤波3.对图片进行小波滤波4.自己构建dbN小波滤波器5.用Cascade算法求解db4尺度函数和小波函数详细过程如下代码所示:所调用的function函数见最后clc,clear all;close allload sumsin.mat[LOD,HID,LOR,HIR]=wfilters('db3');%db3小波滤波器的提取figure,s

2021-04-29 13:36:04 263

原创 MATLAB——Gabor变换实现过程及代码

Gabor变换也叫窗口傅里叶变换对于给定的常数a,b,称为在窗口函数g下的Gabor变换。窗口函数一般是具有紧支集或者速降为零的函数,常用的窗口函数有三个:对于已知的分段线性函数如下,求其Gabor变换的频谱代码如下:该过程分为两步:首先有一个Gb_fun子函数,输入变量a为窗口控制参数,b为平移参数,x为函数变量,输出变量为原始信号fun与窗口函数g的乘积function gy=Gb_fun(a,b,c,x)x=-5:0.2:10;a=1;%高斯窗口函..

2021-03-30 17:33:49 1539

原创 真彩图像、索引图像、灰度图像、二值图像的区别以及使用MATLAB对其相互转换

参考博客:https://www.sohu.com/a/50526196_196473https://blog.csdn.net/weixin_42859280/article/details/93186605彩色图像可以转换为灰度图像,灰度图像可以转换成二值图像彩色图像可以转换成索引图像,索引图像可以转换成灰度图像,灰度图像可以转换成二值图像索引图像可以直接转换成彩色图像,灰度图像不可以直接转换成彩色图像转换语句以及转换关系如下图所示:彩色图像(真彩图像),每个像素通常是由

2021-03-26 14:37:44 1615

原创 MATLAB读取10bit的raw格式图片代码

从手机里读出来的图片大小为4000*3000,数据存储格式为RAW格式,即为10bit存储的二进制数据,大小为4000*3000,将其使用MATLAB读出来,代码如下所示,并显示成图片为如下所示clc,close all,clear allrow=4000;col=3000;filename='E:\C++project test\Wavelet_denoise\分辨率.raw';fid=fopen(filename,'r');A=fread(fid,[row col],'bit10');A

2021-03-22 18:15:12 1256 6

原创 镜头中普通模组与golden模组之间的区别与联系

学习了以下博客的内容,并总结归纳出了普通模组与golden模组之间的区别与联系,如下图所示。https://blog.csdn.net/agwtpcbox/article/details/56677122该博客内容为:摄像头模组的生产加工过程实际上是各个功能物料堆积组合的过程,由上至下大概可以参考下面的示意图:由于模组摄像头的这个堆叠过程中需要用到不同功能的单体物料,每个单体物料之间又不能保证有良好的一致性,所以需要使用OTP这样的手段来综合成品模组之间的差异性。通过将各个单体模组放

2021-02-26 14:37:20 1185 1

原创 运动模糊复原(DMBR)学习笔记

运动模糊产生的原因:如果相机或拍摄对象在曝光期间移动,则生成的照片或视频将显得模糊。因为手机拍照曝光过程中。捕捉画面并不是在瞬间完成的,而是在一个极短的“时间段”,这和快门时间有关,如果相对运动过快,或者抖动出现恰好在捕捉画面的“时间段”,拍摄照片就会出现模糊现象。在录像中经常出现类似的情况。运动模糊算法:DMBR算法函数为:dmbr_aec_calculate(port,&aecCalculate);位于aec_port.c文件中被调用。实现运动模糊复原的算法.

2021-02-01 16:31:55 562

原创 图像中出现的“鬼影”和“重影”区分

对于图像中出现的两个概念“鬼影”和“重影”傻傻分不清楚,错把“重影”当成“鬼影”,闹出了笑话。现在就通过百度以及博客浏览等方式把“伪像”、“鬼影”和“重影”这三个概念以及区别搞清楚,并尽量附上该现象的图。1.伪像DXO评测中有一项是伪像测试,包括取景框中的画面柔和度、失真、渐晕、色差、振铃、闪光、重影、锯齿、摩尔纹等内容。伪像测试用于评估相机镜头或者CMOS在处理图像中引入的失真和其他缺陷时的严重程度。这个测试包含的数据和内容很多,包括清晰度对比、特殊场景测试以及比较重要的运动场景测试等。伪像测试重

2021-01-29 15:50:34 2335

原创 analog_gain(模拟增益) 与digital_gain(数字增益)的区别与联系

在isp流程中有自动曝光(AEC),自动曝光可以可以通过调节 模拟增益,数字增益,曝光时间,光圈大小来调剂曝光,其中对于模拟增益和数字增益的区别为:模拟增益是由硬件实现的,数字增益是通过isp平台可以人为加进去的,对于两个增益带来的噪声区别,通过阅读如下博客内容参考博客:https://camera-zhang-alin.blog.csdn.net/article/details/105475608模拟增益(analog_gain)带来的噪声用数据来说明:2.4和3.1,数字量化后为2.

2021-01-21 19:57:55 8115 1

原创 高通平台camX架构与mm-camera架构的区别(camera tuning角度分析)

高通老平台SM6125,其使用的架构是mm-camera,其sensor文件路径为:vendor/qcom/proprietary/mm-camera/mm-camera2/media-controller/modules/sensor高通新平台SM4250.其使用的架构是cam X,sensor文件路径为: vendor/qcom/proprietary/chi-cdk/oem/qcom/sensor...

2021-01-19 15:42:59 6471

原创 手机拍照中的防抖功能

防抖功能及防抖原理

2020-12-29 20:08:47 527

原创 图像的高频和低频如何区分

高通平台使用小波降噪(WNR)模块进行图像降噪,高通平台通过六种等级的小波变换分别控制每个频率等级的噪声。将噪声分为高频噪声和低频噪声并在亮度(Y luma)和色度(chroma luma)分别进行降噪控制。如何区分图像中的噪声属于高频噪声还是低频噪声是找准调试参数的关键。图像的频率:灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。低频就是颜色缓慢地变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域,这部分就是低频. 对于一幅图像来说,边缘以内的内容为低频,而边缘内的内容就是图像的大部.

2020-11-18 17:04:03 3600

原创 双边滤波与高斯滤波

目录双边滤波器工作原理

2020-11-07 16:10:46 4766 6

原创 ADB 最基本的常用操作指令

adb全称是Android Debug Bridge,它是一个多功能的命令行工具,用来与一个模拟器实例或安卓设备之间通信。adb是一个客户端服务器程序,它包括3个组件:1.client:用来发送命令。客户端运行在你的开发机器上,可以通过执行adb命令从shell调用一个客户端,其他的Android工具例如DDMS也会建立adb客户端。2.daemon:用来在设备上运行命令。在模拟器或安卓设备上,daemon是作为后台程序运行的。3.server:管理客户端和daemon之间的通信,这个服务器作为后台程序运行

2020-10-19 20:48:32 153

原创 sensor逐行曝光原理

关于帧、帧数、帧率的概念帧 Frame简单的理解帧就是为视频或者动画中的每一张画面,而视频和动画特效就是由无数张画面组合而成,每一张画面都是一帧。具体地,在将光信号转换为电信号的扫描过程中,扫描总是从图像的左上角开始,水平向前行进,同时扫描点也以较慢的速率向下移动。当扫描点到达图像右侧边缘时,扫描点快速返回左侧,重新开始在第1行的起点下面进行第2行扫描,行与行之间的返回过程称为水平消隐(也叫行消隐,H_BLANK)。一幅完整的图像扫描信号,是由水平消隐间隔分开的行信号序列构成,称为...

2020-10-19 15:31:09 6056 4

原创 色彩空间和色彩域互相转换及转化目的

一、基本概念色彩空间(color space)指的是用一种客观的方式叙述颜色在人眼上的感觉,通常需要三色刺激值。首先定义三种主要颜色,再利用颜色叠加模型即可叙述各种颜色。色域(color gamut)就是图像颜色的区域,色域越大图像所表现的颜色就越多,色彩的饱和度也就越高。条件等色现象:颜色由其光的波长(或频率)唯一定义,也就是一种波不可能由其他波组合出来,不可能由多种波长合成一种波长。而人的感官细胞会产生一种错觉,即几种波的混合刺激等效于另一种波的单独刺激。明度:眼睛对光源和物体表面的明暗

2020-10-19 13:27:39 1399

原创 关于图像降噪的学习笔记

​​​​​​​关于时域、空域和频域的概念 空间域(spatial domain)也叫空域,即所说的像素域,在空域的处理就是在像素级的处理,如在像素级的图像叠加。通过傅立叶变换后,得到的是图像的频谱。表示图像的能量梯度。频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x(t)是描述信号在不同时刻取值的函数。参考博客:h..

2020-09-04 11:00:40 1332

原创 相机变焦与对焦方法及原理

变焦和对焦是camera工作中重要的一部分,对于其工作原理的理解是重要且必要的

2020-09-02 14:22:07 2640

原创 关于camera的sensor知识

camera 模组主要组成部分为:

2020-08-22 15:45:38 773

原创 ISP(图像信号处理)之关于相机名词的理解(ISO感光度、CRA主光线角度、DOF景深)

在学习成像系统的ISP流程过程中经常要遇到这些基础名词,现在对这些名词进行整理,明白其含义和作用。ISO——感光度 CRA——主光线角度(chief ray angle) DOF——景深(depth of filed) MTF——调制传递函数(modulation transfer function) FL——焦距( focal length) FOV——视场范围( field of view)感光度:ISO感光度的意思是衡量底片对于光的灵敏程度,由敏感度测量学及测zhi量数个数值来决定

2020-08-17 21:05:56 5768

原创 图像评价的基本指标和概念

1.图像质量概念:锐度、锐化、噪声-原始转换2.图像质量因子3.SFRplus演示–设置(INI文件)–测试实验室–模块摘要4.颜色/色调–CCM–动态范围–对比度分辨率图表–颜色检查*5.失真-均匀性-一致性交互-瑕疵检测6.SFR–查找最清晰的文件–Batchview–MTF比较–OIS/图像比较–倾斜边缘算法–锐度/SQF7.分辨率测试:SFR——星图——对数频率——对数F——对比度——随机(溢出硬币等)——任何场景的清晰度8.新功能9.工业测试...

2020-08-13 09:12:03 2108

原创 色差(color diffference)在不同颜色空间下的计算方式

1.色差的概念色差是指两种颜色之间的差异,常见的定义利用了设备独立颜色空间中的欧氏距离。2.色差的计算方式由于颜色差异的大多数定义是一个颜色空间内的距离,确定距离的标准方法是欧氏距离。如果目前有一个RGB(红、绿、蓝)元组并希望找到色差,计算上最简单的方法之一是考虑定义颜色空间的R、G、B线性维数。为了更好地适应人类的感知,已经有很多尝试去加权RGB值,其中分量通常是加权的(红色30%,绿色59%,蓝色11%),但是这些在颜色的确定上明显较差,并且是对这些颜色亮度的贡献,而不是人类视觉.

2020-08-07 19:17:04 4574 1

原创 C++版Opencv3.0 图像色彩变换和图像反插变换

1.色彩空间理解关于色彩空间理解和色彩空间转换参考了很多博客找到了一个介绍很详细的文章,转载下来https://blog.csdn.net/asahinokawa/article/details/805966552.RGB色彩空间向YUV色彩空间转换公式具体转换公式参见下面的博客内容https://blog.csdn.net/xiaoyafang123/article/details/821532793.yuv420p在AVFrame中的结构保存https://blog.c.

2020-05-16 21:32:30 182

光学类北大核心期刊审稿周期整理.xlsx

北大核心期刊每四年评选一次,有的期刊会被踢出来,因此投稿之前一定要详细查看,防止投错刊物。由于北大核心期刊种类很多,涉及到光学类、光电子类、通信类以及信息科学类的期刊我罗列了一些,并且详细参考小木虫点评,列出了审稿周期。

2020-05-04

3 Recovering_high_dynamic_range_by_Multi-Exposure_Retinex1.pdf

高动态范围图像合成的参考文献,该论文中详细描述了高动态范围图像生成的过程,对于高动态范围图像的研究具有参考价值

2020-04-13

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除