蓝桥杯最大比例

X星球的某个大奖赛设了M级奖励。每个级别的奖金是一个正整数。
并且,相邻的两个级别间的比例是个固定值。
也就是说:所有级别的奖金数构成了一个等比数列。比如:
16,24,36,54
其等比值为:3/2

现在,我们随机调查了一些获奖者的奖金数。
请你据此推算可能的最大的等比值。

输入格式:
第一行为数字 N (0<N<100),表示接下的一行包含N个正整数
第二行N个正整数Xi(Xi<1 000 000 000 000),用空格分开。每个整数表示调查到的某人的奖金数额

要求输出:
一个形如A/B的分数,要求A、B互质。表示可能的最大比例系数

测试数据保证了输入格式正确,并且最大比例是存在的。

例如,输入:
3
1250 200 32

程序应该输出:
25/4

再例如,输入:
4
3125 32 32 200

程序应该输出:
5/2

再例如,输入:
3
549755813888 524288 2

程序应该输出:
4/1

资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
思路:
将输入的值从小到大排列,求出前后两两比例,然后利用gcd函数将分母分子化为最简,再次排序(分母顺序或分子顺序),然后分母(或分子相除)求出最小,最小不为1;

#include "stdafx.h"
#include<stdio.h>
#include<algorithm>
#define ll long long
const int N=1000000;
using namespace std;
ll a[N];
struct node
{
	ll x,y;//x为分子,y为分母
}p[N];//利用结构体存储分母分子;
bool cmp(node m,node n)/
{
	return m.x<n.x;
}
/*排序函数,这里我用的是分母排序,排序之后一定成比例,不会存在,
分母相等而分子不等的情况;因此不需要,x,y排列;*/
ll gcd(ll a,ll b)
{	
	
		return b==0?a:gcd(b,a%b);
}//辗转相除求最大公约数;
int main()
{	ll n;//这里将所有变量都设置为ll,因为如果不是同一变量,可以在计算时出现错误;
	scanf("%lld",&n);
	for(int i=0;i<n;i++)
	{
		scanf("%lld",&a[i]);
	}
	sort(a,a+n);//排序(默认递增)
	ll s1;
	ll x,y;
	ll t=0;
	for(int i=0;i<n-1;i++)
	{
		if(a[i]!=a[i+1])如果输入的前后两数相等,直接跳过,所以下面用t来控制p结构体
		{
		s1=gcd(a[i],a[i+1]);//利用s1存储两个数的最大公约数
		p[t].x=a[i+1]/s1;//x是分子 p[t]的分子为a[t]和a[t+1]的最大公约数除a[t+1];
		p[t].y=a[i]/s1;//y是分母 分母为a[t]的最大公约数除a[t];
		t++;
		}
	}
	sort(p,p+t,cmp);//这里以分子为序排列;
	ll minn=p[0].x;
	x=p[0].x;
	y=p[0].y;
	for(int i=0;i<t-1;i++)
    {
    	if((p[i+1].x/p[i].x)<minn&&p[i+1].x/p[i].x!=1)/*如果x1<x2,y1一定小于y2(成比例);
    	如果为1,前后相等,所以毫无意义;*/
    	{
    		x=p[i+1].x/p[i].x;
    		y=p[i+1].y/p[i].y;
		}
	}
	printf("%lld/%lld",x,y);
	
}

参考https://blog.csdn.net/lbperfect123/article/details/87305381

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值