- 博客(50)
- 收藏
- 关注
原创 单细胞转录组:细胞互作分析
完成细胞互作分析后,需要关注以下几点:识别主要的信号通路和关键的配体-受体对分析不同细胞群的通讯模式和功能角色结合生物学背景解释发现的通讯网络如有对照组,可以使用CellChat的compareInteractions等函数进行比较分析通过这些分析,我们可以全面了解组织中的细胞通讯网络,为进一步的功能验证和机制研究提供方向。
2025-09-26 09:15:00
644
原创 单细胞转录组:拟时序分析
拟时序分析(Pseudotime analysis)是一种在单细胞RNA测序(scRNA-seq)数据中重建细胞发育轨迹的计算方法。它基于一个关键假设:在样本中捕获的细胞代表了不同发育阶段的快照,通过计算这些细胞之间的相似性,可以推断出细胞状态变化的顺序,构建出一条或多条发育轨迹。通过以上步骤,我们完成了从Seurat对象出发的完整拟时序分析流程。此分析可以帮助研究者深入理解细胞分化和发育过程,发现驱动细胞状态转变的关键基因,以及揭示不同细胞命运决定的分子机制。
2025-09-25 09:15:00
864
原创 单细胞转录组:单细胞数据分析中细胞类型的智能识别与注释
前面的文章我们介绍过单细胞基于python手动注释的方法,本篇基于Seurat学习自动注释和手动注释。
2025-09-24 09:30:00
498
原创 精准分析单细胞数据:使用DoubletFinder去除双胞的详细步骤
根据官网工具(https://github.com/chris-mcginnis-ucsf/DoubletFinder)的使用要求:doubleFinde是对单个样本处理的,并且输入数据不能包含低质量的细胞簇。然而,在样本制备过程中,可能会出现多个细胞聚集在一起的现象,形成所谓的“双细胞”或“多细胞”。为了满足本篇笔记分析的需求,我从10X官网上下载了一组小鼠心脏的单细胞测序下机数据,并按照之前笔记的教程。以上就是doubletfinder去除双胞的关键步骤,可视化去除双胞结果。
2025-09-23 09:15:00
439
原创 单细胞数据分析:单细胞计数矩阵(Seurat)
在使用seurat进行单细胞分析的时候,大多数的教程都是用计数矩阵作为数据输入,但是我发现一些新手朋友对于不同数据库来源(的数据或者想要去复现、借鉴一个感兴趣的文章中的下机数据时,不知道怎么把数据处理成Seurat可以读入的计数矩阵,所以本篇文章就详细介绍单细胞数据的上游分析。上游分析主要涉及的步骤就两个:比对和质控。我们可以先从10X平台官网了解一些软件和方法。“Software Analysis”的界面提供了3种工具:Cell Ranger:比对质控需要用到的软件。
2025-09-22 12:11:12
732
原创 单细胞数据分析:差异表达分析
在对单细胞数据进行差异表达分析的时候,可以从全细胞和元细胞两个角度去考虑。基于全细胞目前常见的单细胞转录组计算差异表达基因方法有DESeq2、edgeR、limma、MAST、SCDE (Single Cell Differential Expression)、Seurat (FindMarkers)、Monocle ( differentialGeneTest)、t-SNE/PCA-based methods。其中Seurat和DESeq2是医学研究中最常用的两种方法。基于元细胞的方法有SC3 (Sing
2025-09-19 09:15:00
710
原创 单细胞测序数据分析:手动注释
在单细胞转录组分析(scRNA-seq)中,每个细胞都可以测量到大量基因的表达值。为了更好地理解细胞功能和组织组成,需要对每个细胞进行分类并标注其生物学意义,这个过程称为单细胞类型注释。通常,注释是通过结合基因表达数据和先验生物学知识进行的。单细胞注释的原理主要基于细胞类型特异性基因表达模式。不同类型的细胞会有一组特异性表达的基因(称为标志性基因或Marker基因免疫细胞:T细胞通常高表达 CD3D,B细胞高表达 CD19。上皮细胞:高表达 EPCAM。成纤维细胞:高表达 COL1A1。神经元。
2025-09-18 09:15:00
686
原创 跟着Seurat 官网学单细胞转录组分析
在大家进行了一段时间的与学习后,我们开启单细胞测序数据的学习。接下来的教程中,我们将以为基础,从数据预处理、聚类分析到可视化的完整流程,深入讲解如何从原始数据中提取有意义的生物学信息。我们将分析免费提供的外周血单核细胞 (PBMC) 数据集,这一数据集包含了,使用进行测序,数据质量可靠,非常适合初学者学习和练习。获取数据:(https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz)
2025-09-16 09:15:00
885
原创 顶刊大佬都在用什么注释包?
发表在《Nature Methods》的《Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis》带火了GPTcelltype这款自动注释包。阅读文章之后发现GPTcelltype的强大,对比了人工注释、其他注释包,发现chatgpt在初步大类细胞注释中有极高的准确率,并且chatgpt注释在基于10个marker基因的基础上准确率最高。
2025-09-15 11:43:20
416
原创 内存溢出危机:如何优化服务器和IDE的内存管理?
不定义函数的情况n <- 10^9a <- matrix(1,n) #大内存对象1b <- matrix(1, n) #大内存对象2#计算a和b的和,并将结果存储在c中c <- a + b#定义函数的情况n<-10^9a<-matrix(1,n)#大内存对象1b<-matrix(1,n)#大内存对象2c<-a+b#计算a和b的和return(c)#返回结果#调用函数,并传入nc <-memory_efficient_sum(n)#这里传入的是变量n的值。
2025-09-12 09:30:00
317
原创 单细胞互作新思路!NicheNet实战:单核细胞如何调控T细胞?附代码
在NicheNet分析中,我们需要定义哪些细胞是信号发送者(sender),哪些是接收者(receiver)。这里我们选择单核细胞作为发送者,记忆型CD4+ T细胞作为接收者。# 定义发送细胞和接收细胞# 确认细胞数量cat("发送细胞(CD14+ Mono)数量:", length(sender_cells), "\n")cat("接收细胞(Memory CD4 T)数量:", length(receiver_cells), "\n")
2025-09-11 10:00:00
1534
原创 保姆级教程 | CellCall细胞通讯分析全流程
准备数据tmp1 <- dplyr::filter(tmp, weight1 > 0) # 过滤有效的配体-受体关系tmp.df <- trans2tripleScore(tmp1) # 转换权重# 定义节点颜色# 绘制自定义Sankey图axes = 1:3, # 展示三列数据mycol = mycol.vector.list[1:elments.num], # 颜色isGrandSon = TRUE, # 显示"孙子"关系font.size = 2, # 字体大小。
2025-09-11 09:45:00
1316
原创 超实用!带你搞懂Shell脚本与变量的正确打开方式
Shell脚本是由一系列Shell命令组成的脚本文件,通常用于自动化任务、简化复杂的操作和执行系统管理任务。特点可重复使用灵活,适用于多种系统任务可结合条件语句、循环等实现复杂逻辑Shell变量用来存储值,可以是字符串、数字等。/bin/bash# 定义变量AGE=25# 使用变量注意变量名不允许有空格或特殊符号使用变量时加上Shell脚本强大而灵活,适合处理系统管理和自动化任务。掌握变量、条件判断、循环是学习Shell的关键。多动手实践,编写自己的自动化脚本!
2025-09-11 09:30:00
233
原创 Linux 文件查找与链接命令详解
通过 find、locate 和 which,我们可以快速高效地查找文件和命令;通过 alias,可以为命令设置别名,提升工作效率;通过 ln,我们可以创建软链接和硬链接,从而灵活地管理文件。以上命令是 Linux 系统管理中的重要工具,希望这篇文章对你有所帮助!
2025-09-10 09:15:00
281
原创 R语言数据框深度解析:从创建到数据操作,一文掌握核心技能
数据框,data.frame,可能是大家最常用的数据结构了。数据读进来一般默认都是数据框结构。,不同的列可以是不同类型(数值型、字符型、逻辑型等)的数据,比如可以其中一列是数值型,另一列是逻辑型,另一列是字符型,等。但是同一列中必须是相同的类型。
2025-09-09 10:18:56
307
原创 效率翻倍!Linux 文件压缩与解压技术详解
gzip:生成 .gz 文件,适合单文件压缩。bzip2:生成 .bz2 文件,压缩率更高但速度较慢。xz:生成 .xz 文件,压缩率最高。zip/unzip:生成 .zip 文件,支持多文件压缩。tar:不是压缩工具,但常与上述工具结合使用(如 .tar.gz)。单文件压缩与解压。
2025-09-05 09:30:00
305
原创 私藏干货!十分钟入门Linux系统!
生物信息学入门必须掌握的一个基本技能是学会Linux操作系统的使用。如果自己课题组有服务器当然最好,但是如果没有,获取linux操作系统有三个方法:安装虚拟机在自己电脑上安装linux子系统购买云服务器我推荐购买云服务器的方法,云服务器有比较新的高性能计算资源,可以根据任务需求,还有预配置的环境,相对来说可以很多时间和精力。
2025-09-03 09:31:22
833
原创 掌握单细胞动态:手把手教你RNA速率分析(附代码)
RNA 速率分析利用已剪接 mRNA(spliced mRNA)和未剪接 mRNA(unspliced mRNA)之间的比例,推断基因表达的瞬时变化速率,从而预测细胞在转录层面的未来状态。简单来说,它能从细胞的“快照”中,看到它“走向何方”。通过 RNA 速率分析,我们能够从全新的视角审视单细胞数据,揭示细胞状态转变的内在动力学。它不仅能帮助我们理解正常的发育和分化过程,还能在疾病研究中提供宝贵的线索,例如肿瘤进展、免疫细胞活化等。
2025-09-02 09:36:29
896
原创 手把手教你指挥KneadData精准“斩断”宏基因组宿主干扰
通过本次实战,可以发现Claude code能够使用 KneadData 进行宏基因组去宿主的核心技术。或许我可以更早的使用Claude code,从 Bowtie2 建立索引开始,就让它生成完整流程。我们专注于策略思考,它负责精准执行,让人机协作的价值最大化,事半功倍。
2025-08-29 09:45:00
724
原创 新学期,你的电脑算力还够应对新一轮的生信数据分析吗?
相较于传统的硬盘直储,服务器的存储方式为超融合集群存储,天意云生信数据库更是采用异地三备份机制 + RAID冗余存储,数据可靠性高达99.999999999%,比本地硬盘安全等级高10倍。生信分析通常是一个长期、持续的过程,尤其是在分析大规模基因组数据时。可以看出服务器的中总共有629GB的内存,523GB处于可获取状态,这个配置对大家来说肯定绰绰有余,无论运行什么样的单细胞数据应当都不在话下。提供这项强大的自动快照服务,就像一个默默守护的科研伙伴,为你随时“存档”,让你的数据和环境高枕无忧。
2025-08-28 09:24:32
818
原创 Claude code如何做宏基因组数据质控?
本篇推文对宏基因组质控部分,结合AI工具Claude code(AI coder),做了一次完整实践。这是对Claude Code(AI coder)上游数据分析的一次尝试,话不多说,让我们一起看看,如何用AI武装我们的生信分析吧!它不仅让我们对每个工具的作用有了更深刻的理解,更重要的是,它展示了Claude code(AI coder)辅助上游生信分析的巨大潜力。如果你也对宏基因组分析感兴趣,不妨从数据质控这一步开始,亲手实践,感受数据“净化”带来的成就感希望这篇推文能为你提供一些启发。
2025-08-27 10:30:37
880
原创 生信分析自学攻略 | R包的三大来源与典型应用
R语言之所以能在生物信息学领域占据举足轻重的地位,除了其强大的统计计算能力外,更得益于其海量的生态系统。这些R包就像一个个功能模块,极大地扩展了R的功能,从数据处理、可视化到复杂的生物统计分析,几乎无所不能。本篇教程将带你:。掌握如何安装、加载和管理来自不同来源的R包。通过典型R包的实操案例,展示它们在生物信息学数据分析中的强大应用。
2025-08-22 10:00:00
810
原创 生信分析自学攻略 | R语言函数与参数介绍
函数是R语言中一段被命名、可重复使用的代码块。它接收输入(参数),执行特定任务,并返回结果。你可以将其视为一个“黑箱”:你给它输入,它就给你输出。R内置了许多常用函数,如 mean()、sum() 等。而现在,我们将学习如何创建自己的“积木”。在R中,使用 function()用 function() 关键字来定义一个函数。# 函数体:包含执行任务的代码return(result) # 可选:返回函数执行的结果: 你为函数取的名称,应清晰有意义。function(): 定义函数的关键字。
2025-08-21 12:08:28
708
原创 生信分析自学攻略 | R语言数据筛选和修改
准备工作:导入你的数据在《生信小白自学攻略》系列的前几篇文章中,我们已经了解了 R 和 RStudio 的安装、RStudio 的深度探索,以及 R 语言的基本数据类型和数据结构。现在,是时候深入探讨如何运用R 语言对数据进行精细化处理了。本篇推文将详细介绍如何在准备工作:导入你的数据在进行任何数据处理之前,我们首先需要将文件中的数据导入到 R 中。常用的数据格式包括.csv(逗号分隔值)、.txt(制表符分隔值)、.xls和.xlsx等格式。R语言有内置函数读取文件,也有扩展包函数读取相应文件。
2025-08-21 11:59:10
880
原创 生信分析自学攻略 | R语言数据类型和数据结构
通过今天的学习和实践,你现在应该对R语言的数据类型和数据结构有了更深刻的认识。我们通过转录组的差异表达分析和火山图绘制,以及单细胞数据处理和PCA的数据准备,看到了向量、矩阵、数据框和列表如何在实际生信项目中发挥核心作用。在转录组或单细胞分析中,PCA是一种常用的降维和可视化方法,用于查看样本间的整体关系或细胞群的异质性。在R中,每个数据都有其特定的数据类型,这决定了R如何存储和处理它。本篇,我们不仅仅停留在概念讲解,而是将这些基础知识与真实的生信分析场景紧密结合,在解决问题的过程中,体会数据管理的艺术。
2025-08-19 13:39:46
877
原创 生信分析自学攻略 | RStudio深度探索
假设你有一个名为 gene_expression.csv 的数据文件,如果它与你的R脚本在同一个R Project文件夹下,你只需简单地使用 read.csv("gene_expression.csv") 即可读取。如果工作目录不正确,R就无法找到这个文件。: 点击“Create Project”,RStudio会立即为你创建一个新的R Project,并在文件面板显示项目文件夹结构,同时RStudio的标题栏会显示当前项目的名称。控制台是R语言的“心脏”,你在这里直接输入并执行R命令,R会立即返回结果。
2025-08-19 13:35:20
1019
原创 生信分析自学攻略 | R软件和Rstudio的安装
我之前在小红书分享过一篇的教程图文,收获不错的反响,但是也收到许多小伙伴反馈安装版本问题,安装之后找不到图标等问题。今天作为这个系列的第一篇,我会详细讲解R软件和Rstudio的安装,以及解答大家可能遇到的安装问题。
2025-08-18 16:37:33
1112
原创 小白如何自学生信分析?零基础入门绝佳攻略
只有了解了数据的产生过程,你才能在后续的质控、分析和解读中,做出合理且明智的判断。精选你的案头书:我强烈建议你选择《bioinformatics data skills》这个本书。它是作为入门生物信息学的最佳首选,不仅能教授实用技能还能帮你培养良好的分析习惯,书中的代码在Github可下载。同时,注意避开那些出版过早的《生物信息学导论》,该领域日新月异,陈旧的知识不仅无益,更会浪费你宝贵的时间。
2025-08-18 16:33:21
729
原创 CPU、内存、存储:生信分析任务的服务器配置精要
生物信息学分析通常涉及大规模数据处理和计算密集型任务,因此需要高性能的服务器支持。根据不同的分析任务和数据量,服务器配置的要求也有所不同。今天就汇总一下不同分析任务所需服务器配置的详细说明。
2025-08-15 14:03:15
422
原创 AI真的懂生信吗?Claude Code 能否胜任个性化生信分析?
本文以单细胞测序数据为例,测试了Claude Code(AI coder)在生信高阶分析中的实际能力。结果表明,它不仅能够精准执行标准流程,还能在已有结果基础上理解分析意图,辅助完成个性化的蛋白互作网络构建与细胞通讯解析,展现出强大的AI分析潜力。
2025-08-15 12:18:02
687
原创 完蛋!我把服务器的数据误删了!
有了快照,你再也无需畏手畏脚。在升级前,系统已为你自动保存了当前稳定环境的快照。没关系,一键恢复到升级前的状态,整个过程丝滑流畅,安心升级无风险!无论是几小时前,还是几天前,只要有快照记录,你的数据就能“起死回生”,有效避免因操作失误造成的数据损失和项目延误。天意生信云为所有用户免费提供这项强大的自动快照服务,就像一个默默守护的科研伙伴,为你随时“存档”,让你的数据和环境高枕无忧。近日,我们的一位用户在清理RStudio缓存时,不小心敲下了这条“,轻松一键,就将整个用户目录恢复到了用户删除文件之前的状态。
2025-08-13 09:23:12
534
原创 GPT-5发布!人人都能用上的「博士级」智能模型!
LMArena全榜第一目前,国内一站式AI工具平台——天意科研云,已上线 GPT-5 模型,无需魔法即可使用。👉 天意科研云地址:ai.dftianyi.com据山姆・奥特曼介绍,目前,GPT-5 面向普通用户提供免费、Plus 及 Pro 三种使用模式。API 平台也推出了 GPT-5、GPT-5 mini 和GPT-5 nano 三款模型供选择。这一次,OpenAI 不再是挤牙膏式更新,相较于 GPT-4 系列模型,。
2025-08-08 15:53:29
267
原创 Claude Opus 4.1 模型发布!编程实力遥遥领先!
刚刚,Claude Opus 4.1 正式发布!目前,国内一站式AI工具平台——天意科研云,已上线 Claude Opus 4.1 模型,无需魔法即可使用。👉 天意科研云地址:ai.dftianyi.comAnthropic 在发布 Claude Opus 4 不久后,昨天凌晨再次推出 Claude Opus 4.1,编程能力再次提升。按照官方的说法,Opus 4.1 并不是一次彻底换代,而是对 Opus 4 的深度优化,全面提升了Agent代理任务、现实世界编程和逻辑推理能力。
2025-08-06 19:46:34
328
原创 时隔5年,OpenAI 再次开源2款推理模型!笔记本、手机可运行
时隔 5 年,OpenAI 再次开源两款 AI 模型!OpenAI 终于不再“Close”!继 Claude 推出 Opus 4.1 后,OpenAI 也不甘示弱,一下子发布了两款开源模型:gpt-oss-120b和gpt-oss-20b。目前,国内一站式AI工具平台——天意科研云,已上线 gpt-oss-120b 模型,无需魔法即可使用。👉 天意科研云地址:ai.dftianyi.com。
2025-08-06 19:39:37
363
原创 我已经放弃Cursor,用上了更权威的Claude Code
还在苦苦挣扎着做学术汇报PPT的小伙伴看过来!今天聊个能偷懒的神操作——用Claude code一键提取论文内容并生成PPT。就算是手残党也能快速整出汇报框架,虽然排版得自己调,但这效率也够我们多摸半天鱼了(狗头)。首先,我们让Claude code识别提取PDF文献的内容。提示词:请识别 D:\测试\文献\23-1137 PDF文献,自动识别摘要、方法、结果、结论部分,提取每部分的核心要点(3-5个bullet points)并保存为JSON格式。输出结果:从下图可以看到,Claude code成功识别提
2025-07-31 18:26:02
393
原创 纯生信的文章还能发高分期刊吗?
今天分享一篇中医药相关的纯生信文章。没有测序也没有湿实验,只分析公共数据库的数据发表在了上。我们来看他是做了什么工作。数据整合与成分鉴定: 整合多批次 RA/HC 的 bulk/scRNA-seq 数据 + UHPLC-HRMS 鉴定 GZSYZM 活性成分。疾病基因筛选: 通过 DEGs + WGCNA 筛选 RA 潜在基因。药物靶点预测: 利用 TCMSP 等数据库预测 GZSYZM 候选靶点。核心靶点筛选。
2025-07-25 11:40:52
647
原创 一键实现批量读文献,整理笔记,生成万字文献综述!
Claude Code基于我的要求给出了5个研究方向建议,详细剖析了每个研究方向的研究内容、创新点以及可行性,并在结尾给出了综合性的建议及实施策略,为我后续的文献综述写作提供了清晰的路线图和可操作的执行方案。写一篇关于“多模态单细胞时空组学数据的智能融合平台”的论文综述,要求内容专业详细,全文标注引用文献,并附上完整真实的参考文献列表,参考文献不局限于附件文献,联网搜索权威期刊文献。同时,它还能根据我的输入语言,将英文文献自动翻译成中文,大大提升了文献阅读的效率和便捷性。
2025-07-23 11:25:34
813
原创 谁懂在家连上实验室服务器那一刻的救赎感!
内网穿透是一种网络技术,允许您从外部网络(如互联网)安全访问内部网络(如公司局域网)中的资源。简单来说,它在公网与内网之间建立一条安全通道,让您能够随时随地访问内网服务器、数据库、应用程序等资源,而无需考虑网络环境的限制。
2025-07-22 20:28:21
403
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人