基本功
小小糯米呀
这个作者很懒,什么都没留下…
展开
-
vgg16中 nn.Sequential(*list(vgg.classifier._modules.values())[:-1])
原博:https://blog.csdn.net/a1103688841/article/details/89383215先总结一下,self.RCNN_base = nn.Sequential(*list(vgg.features._modules.values())[:-1]),详解如下:vgg是已经构建好的vgg模型。vgg.features是取出vgg16网络中的features大层...转载 2019-07-25 10:19:21 · 4153 阅读 · 0 评论 -
彻底搞懂ResNet50
待续原创 2019-05-30 09:02:16 · 139327 阅读 · 10 评论 -
彻底搞懂SSD网络结构
还是得从下图说起,之前一直没实际搞清楚。SSD的网络结构流程如下图所示:tensorflow代码如下: with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse): # Original VGG-16 blocks. net = slim.repeat(inputs, 2, ...原创 2019-05-27 22:15:52 · 44377 阅读 · 6 评论 -
彻底搞懂VGGNet-16
VGGNet-16在整体上可以划分为8个部分(8段),前5段为卷积网络,后3段为全连网络。首先创建第一段卷积网络,这一段卷积网络由2个卷积层和1个最大池化层构成,即共3层。对于两个卷积层,其卷积核的大小都是3x3,同时卷积核数量(输出通道数)也均为64,步长为1x1,padding均为1。—这也就是我们做卷积时所关心的几个参数:卷积核大小、卷积核深度、步长、padding。故,第一个卷积层的输入...原创 2019-05-27 15:51:16 · 6811 阅读 · 5 评论 -
彻底搞懂YOLO
YOLO训练和检测均是在一个单独网络中进行。训练:网络结构:使用1x1和3x3的卷积来代替GoogleNet中原来的Inception模块,使用ImageNet数据集预先训练好GoogleNet。再加入一些新的卷积层,参数是随机初始化的。输出tensor的值是没有任何意义的,我们通过训练,人为规定某个维度的值表示什么。我们规定如下:其中训练样本的x,y,w,h都是已知的,Pr(Obj...原创 2019-06-12 19:03:59 · 808 阅读 · 0 评论 -
评价四指标
We use four metrics (i.e., precision §, recall ®, F1-score (F1) and mean intersection over union (Mean IoU))。其中P、R、F1-score计算公式如下所示:其中TP(true positive)表示本来就是正例,也被预测为正例的个数,FP(false positive)表示本来是负例,...原创 2019-06-05 14:36:02 · 443 阅读 · 0 评论