AcWing 361. 观光奶牛(01分数规划)(判正环)

题干:

给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。
求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。
输出这个最大值。
注意:数据保证至少存在一个环。
输入格式
第一行包含两个整数L和P。
接下来L行每行一个整数,表示f[i]。
再接下来P行,每行三个整数a,b,t[i],表示点a和b之间存在一条边,边的权值为t[i]。
输出格式
输出一个数表示结果,保留两位小数。
数据范围
2≤L≤1000,
2≤P≤5000,
1≤f[i],t[i]≤1000

输入样例:
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例:
6.00

思路:

根据题意,我们要求的首先是一个正环,然后需要让这个环上的点权和除以边权和最大。 ∑ f i / ∑ e i \sum_{}f_i / \sum_{}e_i fi/ei,fi表示点权,ei表示边权。
既然是有向图而已要有环,我们可以把边权放在出点上,这样一个点即表示了边权也表示了点权,会简单一些。。。

这就是一个比较标准的01分数规划模型即 ∑ i = 1 n f i ∗ x i ∑ i = 1 n e i ∗ x i \frac{\sum_{i=1}^{n}f_i*x_i}{\sum_{i=1}^{n}e_i*x_i} i=1neixii=1nfixi其中xi=0或xi=1。
我们设一组{ x 1 , x 2 . . . x n x_1,x_2...x_n x1,x2...xn}满足 ∑ i = 1 n ( f i − m i d ∗ e i ) > = 0 \sum_{i=1}^{n}(f_i-mid*e_i)>=0 i=1n(fimidei)>=0
①若存在,则: ∑ i = 1 n f i ∗ x i ∑ i = 1 n e i ∗ x i > = m i d \frac{\sum_{i=1}^{n}f_i*x_i}{\sum_{i=1}^{n}e_i*x_i}>=mid i=1neixii=1nfixi>=mid
即mid比要求的最大值小
②若不存在,则: ∑ i = 1 n f i ∗ x i ∑ i = 1 n e i ∗ x i < m i d \frac{\sum_{i=1}^{n}f_i*x_i}{\sum_{i=1}^{n}e_i*x_i}<mid i=1neixii=1nfixi<mid
即mid比要求的最大值大
这就形成了一个二分判断,即01分数规划问题可以用二分来做。

然后问题就转换成了找到一个正环,二分查找 ∑ f i / ∑ e i ? m i d \sum_{}f_i / \sum_{}e_i ?mid fi/eimid
然后思考二分的左右边界,因为是有向图,所以左边界是 ∑ i = 1 1000 1 / ∑ i = 1 5000 1000 ≈ 0 \sum_{i=1}^{1000}1 / \sum_{i=1}^{5000}1000 \approx 0 i=110001/i=1500010000,右边界是 ∑ i = 1 1000 1000 / ∑ i = 1 1000 1 = 1000 \sum_{i=1}^{1000}1000 / \sum_{i=1}^{1000}1 =1000 i=110001000/i=110001=1000
然后注意下因为要输出分数,所以mid和dis[]要用double。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1010,M=5010;
int n,m;
int f[N],q[N],cnt[N];
double dis[N];
int idx,h[N],ne[M],e[M],wt[M];
bool vis[N];
void add(int a,int b,int c){
    e[idx]=b;
    wt[idx]=c;
    ne[idx]=h[a];
    h[a]=idx++;
}
bool check(double mid){
    memset(dis,0,sizeof(dis));
    memset(cnt,0,sizeof(cnt));
    memset(vis,0,sizeof(vis));
    int hh=0,tt=0;
    for(int i=1;i<=n;i++){
        q[tt++]=i;
        vis[i]=true;
    }
    while(tt!=hh){
        int t=q[hh++];
        if(hh==N)   hh=0;
        vis[t]=false;
        for(int i=h[t];~i;i=ne[i]){
            int j=e[i];
            if(dis[j]<dis[t]+f[t]-mid*wt[i]){
                dis[j]=dis[t]+f[t]-mid*wt[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n) return true;
                if(!vis[j]){
                    q[tt++]=j;
                    if(tt==N) tt=0;
                    vis[j]=true;
                }
            }
        }
    }
    return false;
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&f[i]);
    memset(h,-1,sizeof(h));
    while(m--){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    double l=0,r=1e6;
    while(r-l>1e-5){
        double mid=(r+l)/2;
        if(check(mid)) l=mid;
        else    r=mid;
    }
    printf("%.2lf\n",l);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值