1、将3个球随机地放入4个杯子中去,设X为杯子中球的最大个数,求X的所有取值,并求概率P{X=3}。
【解析】X为杯子中球最大个数。3个球随机放入4个杯子,4个杯子中要么3个球分别放入3个杯子,即X=1;要么2个球在一个杯子,1个球在一个杯子,X=2;要么3个球都在一个杯子,X=3。
【解】
2、某人射击的命中率为0.6,他独立进行了5次射击,记X为命中次数,求他至少命中一次的概率。
【解析】二项分布。射击事件命中率不变的情况下独立重复进行了5次射击,5重伯努利实验公式。求至少命中一次的概率也就是求总概率减去一次都没命中的概率。
【解】
3、袋中有编号为1,2,3,4,5的5个球,从中任取三个球,以X表示三个球的最大号码,求X的分布律。
【解析】∵X表最大号码,所以X可取3,4,5。当X取3时,因为3为最大号码,所以剩下两个球只能取1和2。同理,当X取4时,剩下两个球只能在1,2,3中取,具体步骤如下
【解】
4、设在N件产品中有M件不合格品,从这批产品中随机地抽取n件作检查,求其中不合格品的件数X的分布律,(此时称X服从参数为N,M,n的超几何分布)。
【分析】直接套用超几何分布的公式,X≤n且X≤M
5、已知随机变量X的分布律为
试求关于t的一元二次方程3t²+2Xt+(X+1)=0有实根的概率。
【分析】一元二次方程有实根即△≥0。求解出X后就可以根据分布律得出概率了(根号下不能开方的可以估算一下在哪个区间然后再看)
【解】
6、设随机变量X的分布律为P{X=k}=a/N,k=1,2,…,N。试确定常数a。
【分析】已知k=1,2,…,N时的概率都为a/N,且所有概率相加等于1。由此可以求解
【解】7、一大楼装有5给同类型的供水设备。调查表明在任一时刻t每个设备被使用的概率为0.1,问在同一时刻:【分析】全是二项分布,也就是n重伯努利实验
(1)恰有2个设备被使用的概率是多少?
(2)至少有3个设备被使用的概率是多少?
(3)至多有3个设备被使用的概率是多少?
(4)至少有1个设备被使用的概率是多少?
8、随机变量X的分布律为
求X的分布函数,并求P{X>√5}和P{3≤X≤5}。
【分析】随机分布函数的定义:X是随机变量,x是任意实数,函数F(x)=P{X≤x},x取遍-∞到+∞
【解】
9、已知离散型随机变量X的分布函数为
且对X的每个可能值
求X的分布律。
【分析】因为x是遍历了-∞到+∞的,且有图得x在0到1的时候概率为0.2,所以当X=0的时候就是0.2,等于1的时候就是1-0.2=0.8
【解】
10、问A为何值时,是一随机变量X的分布函数。
【分析】概率最大为1
【解】
11、设X是[-2,5]上的均匀分布随机变量,求关于u的二次方程4u²+4Xu+X+2=0。有实根的概率。
【分析】已知在【-2,5】上是均匀分布,即在【-2,5】区间内的概率密度为1/5-(-2)=1/7
【解】
12、连续型随机变量X的分布函数为,
其中,a为正常数,求
(1)常数A和B;
【分析】-a代入为0,a代入为1,联立方程组求解
【解】F(x)为连续函数,在-a,a两点连续得
(2)p{-a/2<x<a/2}
(3)X的概率密度
【分析】概率密度为分布函数的导数
13、设随机变量X的概率密度为,
试确定常数c,并求X的分布函数及P{1<X<√5}
【分析】-∞到+∞所有概率密度相加为1
【解】
14、设X~N(3,2²)
(1)求P{2<X≤5},P{-4<X≤10},P{|X|>2},P{X>3};
【分析】直接凑标准正态分布,结果查表
(2)确定c使得P{X>c}=P{X≤c};
【解】
(3)设d满足P{X>d}≥0.9,问d至多为多少?
【解】
15、设X的分布律为
求Y=X²的分布律。
【解】概率不变,X求解后相同的概率相加
16、设X~N(0,1),求:
【求解步骤】1、先求分布函数。2、对分布函数求导
(1)Y=X²
【分析】标准正态分布
(2)Y=e^X的概率密度
【解】
17、设X的概率密度为
求Y=1-3次根号下X的概率密度。
【分析】先求分布函数,再对分布函数求导得概率密度
结束语:由于我也没有标准答案,如果解释有误,希望大家提出来改正一下