【三】 灰度变换(1)【830数字图像处理】

在这里插入图片描述

文章目录

空间域是包含图像中的像素的平面,空间域技术直接操作图像中的像素,而频率域技术操作的是图像的傅里叶变换而非图像本身。空间域图像处理的两个主要类别是灰度变换和空间滤波。

注:本章大部分例子是关于图像增强的。

1 灰度变换与空间滤波基础

空间域处理基于表达式 g ( x , y ) = T [ f ( x , y ) ] g(x,y)=T[f(x,y)] g(x,y)=T[f(x,y)] f ( x , y ) f(x,y) f(x,y)是输入图像, g ( x , y ) g(x,y) g(x,y)是输出图像, T T T是在点 ( x , y ) (x,y) (x,y)的一个领域上定义的针对 f ( x , y ) f(x,y) f(x,y)的算子。该算子可应用于单幅图像的像素,也可应用于一组图像的像素。

图3.1所示过程为空间域像素处理的基本过程:将领域的中心从一个像素移动到另一个像素,并将算子 T T T应用到邻域中的像素,以便在该位置产生一个输出值。比如:邻域是一个大小为 3 × 3 3×3 3×3的矩形,算子 T T T被定义为“计算邻域内像素的平均灰度”,则当前点像素 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)将会输出邻域内9个像素相加然后除以9所得到的平均值。

若邻域的一部分位于图像外部,此时解决方案两种:①忽略图像外部的值②填充图像。通常我们采用第二种方法。

最小邻域的大小为 1 × 1 1×1 1×1。此时 g ( x , y ) g(x,y) g(x,y)只依赖于 f ( x , y ) f(x,y) f(x,y)处的值。 T T T则称为灰度变换函数: s = T ( r ) s=T(r) s=T(r)
为简单起见, s s s r r r 分别表示 g g g f f f 在任意点 ( x , y ) (x,y) (x,y) 处的灰度。

图3.2a所示,将该变换应用到 f f f 中的每个像素以生成 g g g 中的对应像素的结果是:小于 k k k 值的 r r r 值,减小(变暗) s s s 的值,倾向于黑色(将 k k k 以下的灰度级变暗);大于 k k k 值的 r r r 值,增大(变亮) s s s 的值,倾向于白色(将高于 k k k 的灰度级变亮)。这就是对比度拉伸技术,后面会谈到。图3.2中所示的极限情况下, T ( r ) T(r) T(r)产生一幅二值图像。这种形式的映射称为阈值处理函数。

习题3.1

在这里插入图片描述

f f f表示原始图像。首先,从 f f f中减去 f f f的最小值,表示为 f m i n f_{min} fmin,从而得到最小值为0的函数: g 1 = f − f m i n g_1=f-f_{min} g1=ffmin接下来,将 g 1 g_1 g1除以其最大值,在 [ 0 , 1 ] [0,1] [0,1]范围内产生一个函数,再乘以 L − 1 L-1 L1的结果,得到一个在 [ 0 , L − 1 ] [0,L-1] [0,L1]范围内的函数
g = L − 1 m a x ( g 1 ) g 1 = L − 1 m a x ( f − f m i n ) ( f − f m i n ) g=\frac{L-1}{max(g_1)}g_1=\frac{L-1}{max(f-f_{min})}(f-f_{min}) g=max(g1)L1g1=max(ffmin)L1(ffmin)记住, f m i n f_{min} fmin是一个标量, f f f是一幅图。

习题3.2

在这里插入图片描述
(a) s = T ( r ) = 1 1 + ( m / r ) E s=T(r)=\frac{1}{1+(m/r)^E} s=T(r)=1+(m/r)E1

2 一些基本的灰度变换函数

2.1 图像反转

图像反转函数 s = L − 1 − r s=L-1-r s=L1r

图像经反转后会得到类似于照片底片的效果。这种类型的处理可用于增强图像暗色区域中的白色或灰色细节,暗色区域的尺寸很大时,这种增强效果更好。如图3.4所示,图像反转后的乳房病变的细节呈现的更清晰。

2.2 对数变换【凸的】

在这里插入图片描述

输出灰度级 s = c ⋅ log ( 1 + r ) s=c\cdot\text{log}(1+r) s=clog(1+r) c c c 是常数, r r r是输入灰度级。该变换是将输入中范围较窄的低灰度值映射为输出中范围较宽的灰度值。我们使用对数变换来扩展图像中的低灰度值,同时压缩高灰度值(将被暗区域盖住的细节显示出来)。反对数变换的功能相反(将过曝光处的细节显示出来)

对数函数具有压缩像素值的动态范围的重要性质。像素值具有大动态范围的一个例子是傅里叶频谱。频谱值的灰度范围通常超级高(范围从0到 1 0 6 10^6 106或更高,而我们一般计算机只能显示[0,255]的灰度),虽然计算机能够处理这么庞大数字,但图像却无法再现如此宽范围的数值,最终结果是傅里叶谱会损失灰度细节如图3.5a所示。图a就是典型被黑色支配了,其实这个黑色背景里面隐含着很多细节信息,经过对数变换并将灰度范围缩放至区间[0,255]后隐藏在黑色区域的细节部分显示了出来,如图b所示。(注:本书中傅里叶频谱基本上都已按这种方式进行缩放)

2.3 反对数变换【凹的】【指数变换】

在这里插入图片描述

2015、2018、2022甄题【简答题】

(2015)分别用对数变换和反对数变换处理一幅灰度图像,请定性地对比分析各自的处理效果。
(2018、2022)简述对数变换和反对数变换的区别与优缺点。

对数变换:用于扩展低灰度值,同时压缩高灰度值。可以增强暗部细节,但可能会导致亮部细节的丢失。

反对数变换:用于扩展高灰度值,同时压缩低灰度值。可以增强亮部细节,但可能会导致暗部细节的丢失。

2.5 幂律(伽马)变换

输出灰度级 s = c ⋅ r γ s=c\cdot r^γ s=crγ c c c是常数, r r r是输入灰度级。如对数变换那样,幂律变换是用分数值 γ γ γ将较窄范围的暗输入值映射为较宽范围的输出值,将高输入值映射为较窄范围的输出值。 γ < 1 γ<1 γ1效果与对数变换类似, γ > 1 γ>1 γ>1效果与反对数变换类似, c = γ = 1 c=γ=1 c=γ=1时为恒等变换。

用于矫正幂律响应现象的处理称为伽马矫正或伽马编码。显示器可能会自带伽马值,没经过伽马矫正的原图像输入该显示器后可能会变得比输出暗,如图3.7b所示。而经过伽马矫正后,再次在该显示器显示的图像则会接近原图像。本例中伽马矫正的过程则是:将图像输入伽马值为2.5的显示器之前,用幂律变换( s = r 1 / 2.5 = r 0.4 s=r^{1/2.5}=r^{0.4} s=r1/2.5=r0.4)预处理图像(可推广)。

除伽马矫正外,幂律变换还可用于对比度处理。如图3.8a所示,圆圈突出区域可以看到裂缝,但是不明显,由于图像偏暗,则需要扩展灰度级,以便显示暗区域内的细节,通过观察b,c,d可以发现,当伽马值(γ)从0.6降到0.4时,会出现更多细节。但是当γ进一步减小到0.3时,虽说暗区的细节得到增强,但图像对比度开始下降。可以发现,当 γ = 0.4 γ=0.4 γ=0.4时,对比度和可分辨细节的增强效果最好。

图3.9是幂律变换的另一个例子,图3.9a是一张过曝光图像,细节隐藏在高灰度级之内,这表明需要压缩灰度级。采用 γ > 1 γ>1 γ>1的幂律变换即可实现灰度级压缩。可以观察到,对于这幅图像而言,当 γ = 4.0 γ=4.0 γ=4.0时,效果更好,因为它的对比度更高。

2021甄题【设计题】

已知灰度变换函数中的指数变换表达式为: s = c r γ s=cr^γ s=crγ,则
(1) γ > 1 γ>1 γ>1 γ < 1 γ<1 γ<1时,指数变换产生的效果
(2)同时有大量的过亮和过暗区域,设计算法改善过亮/过暗区域

(1)
γ < 1 γ<1 γ<1的效果类似于对数变换,可以扩展图像中的低灰度值,同时压缩高灰度值,将暗区域的细节显示出来。
γ > 1 γ>1 γ>1的效果类似于反对数变换,可以扩展图像中的高灰度值,同时压缩低灰度值,将亮区域的细节显示出来。

(2)

  1. 设置阈值:设定一个低阈值 T 1 T_1 T1 和一个高阈值 T 2 T_2 T2

  2. 图像分割:根据阈值,将图像分为三类区域:

    • 过暗区域:灰度值低于 T 1 T_1 T1 的的连通区域
    • 过亮区域:灰度值高于 T 2 T_2 T2 的连通区域
    • 正常区域:灰度值在 T 1 T_1 T1 T 2 T_2 T2 之间的的连通区域
  3. 伽马校正

    • 过暗区域 γ < 1 \gamma < 1 γ<1 ,扩展低灰度值,使得暗部细节更加明显。
    • 过亮区域 γ > 1 \gamma > 1 γ>1 ,压缩亮度范围,增强亮部的细节。
    • 正常区域 γ = 1 \gamma = 1 γ=1,不进行变化,保持原始亮度。

2.5 分段线性变换函数

分段线性变换函数的优点是:其形式可以任意复杂。缺点是:要求用户输入很多参数。

2.5.1 对比度拉伸

在这里插入图片描述

对比度拉伸是通过点 ( r 1 , s 1 ) (r_1,s_1) (r1,s1)和点 ( r 2 , s 2 ) (r_2,s_2) (r2,s2)的位置来控制变换函数形状,如图3.10a所示。

  • r 1 = s 1 , r 2 = s 2 r_1=s_1,r_2=s_2 r1=s1,r2=s2时,是一个不改变灰度的线性函数。
    在这里插入图片描述

  • r 1 = r 2 , s 1 = 0 , s 2 = L − 1 r_1=r_2,s_1=0,s_2=L-1 r1=r2,s1=0,s2=L1时,变成二值图像的阈值处理函数
    在这里插入图片描述

我们一般假设 r 1 ≤ r 2 , s 1 ≤ s 2 r_1≤r_2,s_1≤s_2 r1r2,s1s2 ,以便函数是单值,且是单调递增的。这会保留灰度级的顺序,防止产生伪影。

图3.10b显示了一幅低对比度图像。

图3.10c显示了令 ( r 1 , s 1 ) = ( r m i n , 0 ) (r_1,s_1)=(r_{min},0) (r1,s1)=(rmin,0) ( r 2 , s 2 ) = ( r m a x , L − 1 ) (r_2,s_2)=(r_{max},L-1) (r2,s2)=(rmax,L1)时得到的对比拉伸结果。其中 r m i n 和 r m a x r_{min}和r_{max} rminrmax分别表示输入图像中的最小灰度级和最大灰度级。

图3.10d显示了阈值处理后的结果,其中 ( r 1 , s 1 ) = ( m , 0 ) (r_1,s_1)=(m,0) (r1,s1)=(m,0) ( r 2 , s 2 ) = ( m , L − 1 ) (r_2,s_2)=(m,L-1) (r2,s2)=(m,L1),m是图像中的平均灰度级。

2005、2006甄题【名词解释】

对比度增强

对比度增强指的是通过调整图像的亮度分布,增加图像中不同区域(特别是亮部和暗部)之间的对比度,从而使图像看起来更加清晰和生动。

2013甄题【计算题】

(10分)试给出把灰度范围(0,10)拉伸到(0,15),把灰度范围(10,20)拉伸到(15,25),并把灰度范围(20,30)压缩为(25,30)的分段线性变换方程。

已知线性方程标准式为: y = k x + b y=kx+b y=kx+b。于是,由题意可得
( 0 , 10 ) → ( 0 , 15 ) ⟹ { 0 = 0 × k + b 15 = 10 k + b ⟹ y = 1.5 x (0,10)→(0,15)\Longrightarrow\begin{cases} 0=0×k+b \quad \\ 15 = 10k+b \quad \end{cases}\Longrightarrow y=1.5x 0,100,15{0=0×k+b15=10k+by=1.5x
( 10 , 20 ) → ( 15 , 25 ) ⟹ { 15 = 10 k + b 25 = 20 k + b ⟹ y = x + 5 (10,20)→(15,25)\Longrightarrow\begin{cases} 15=10k+b \quad \\ 25 = 20k+b \quad \end{cases}\Longrightarrow y=x+5 10,2015,25{15=10k+b25=20k+by=x+5
( 20 , 30 ) → ( 25 , 30 ) ⟹ { 25 = 20 k + b 30 = 30 k + b ⟹ y = 0.5 x + 15 (20,30)→(25,30)\Longrightarrow\begin{cases} 25=20k+b \quad \\ 30 = 30k+b \quad \end{cases}\Longrightarrow y=0.5x+15 20,3025,30{25=20k+b30=30k+by=0.5x+15
综上,所求分段线性变换方程为: y = { 1.5 x , 0 ≤ x < 10 x + 5 , 10 ≤ x < 20 0.5 x + 15 , 20 ≤ x ≤ 30 y=\begin{cases} 1.5x, & 0 \leq x < 10 \\ x + 5, & 10 \leq x < 20 \\ 0.5x + 15, & 20 \leq x \leq 30 \end{cases} y= 1.5x,x+5,0.5x+15,0x<1010x<2020x30

2011、2015、2021甄题【计算题】

试给出把灰度范围(0,20)拉伸到(0,30),把灰度范围(20,30)拉伸到(30,50),并把灰度范围(30,60)压缩为(50,60)的灰度线性变换方程。

已知线性方程标准式为: y = k x + b y=kx+b y=kx+b。于是,由题意可得
( 0 , 20 ) → ( 0 , 30 ) ⟹ { 0 = 0 × k + b 30 = 20 k + b ⟹ y = 1.5 x (0,20)→(0,30)\Longrightarrow\begin{cases} 0=0×k+b \quad \\ 30 = 20k+b \quad \end{cases}\Longrightarrow y=1.5x 0,200,30{0=0×k+b30=20k+by=1.5x
( 20 , 30 ) → ( 30 , 50 ) ⟹ { 30 = 20 k + b 50 = 30 k + b ⟹ y = 2 x − 10 (20,30)→(30,50)\Longrightarrow\begin{cases} 30=20k+b \quad \\ 50 = 30k+b \quad \end{cases}\Longrightarrow y=2x-10 20,3030,50{30=20k+b50=30k+by=2x10
( 30 , 60 ) → ( 50 , 60 ) ⟹ { 50 = 30 k + b 60 = 60 k + b ⟹ y = 1 3 x + 40 (30,60)→(50,60)\Longrightarrow\begin{cases} 50=30k+b \quad \\ 60 = 60k+b \quad \end{cases}\Longrightarrow y=\frac{1}{3}x+40 30,6050,60{50=30k+b60=60k+by=31x+40
综上,所求灰度线性变换方程为: y = { 1.5 x , 0 ≤ x < 20 2 x − 10 , 20 ≤ x < 30 1 3 x + 40 , 30 ≤ x ≤ 60 y = \begin{cases} 1.5x, & 0 \leq x < 20 \\ 2x - 10, & 20 \leq x < 30 \\ \frac{1}{3}x + 40, & 30 \leq x \leq 60 \end{cases} y= 1.5x,2x10,31x+40,0x<2020x<3030x60

2.5.2 灰度级分层

若目的是突出图像中特定灰度区间,那么就需要使用灰度级分层方法来实现。
灰度级分层方法有两种

  • 第一种是将感兴趣范围内的所有灰度值显示为一个值(如白色),而将所有其他灰度值显示为另一个值(如黑色),这种变换会产生一幅二值图像,如图3.11a所示。
  • 第二种方法是基于图3.11b中的变换,使期望的灰度范围变亮(或变暗),但保持图像中的其他灰度级不变。

图3.12说明了灰度级分层的例子。本例目的是采用灰度级分层技术来增强比背景更亮的主要血管,这是注入人造影剂后的结果。

图3.12b是用图3.11a中的变换后得到的结果,得到了一幅二值图像,部分甚至和血管显示为白色,其余灰度显示为黑色,有助于人们研究造影剂流动的形状特征(如检测阻塞)。

若兴趣是感兴趣区域的实际灰度值,则可以使用图3.11b所示的变换,如图3.12c所示,该变换中,目标区域灰度值不变,设置的一个灰度带区域被置为黑色。若兴趣是在一系列图像中测量造影剂的实际流动与时间的关系,那么这种结果可能是有帮助的。

2.5.3 比特平面分层

像素值是由比特组成的整数。例如在一幅256级灰度图像中, 256 = 2 8 256=2^8 256=28,故图像是由8比特(1字节)组成。如图3.13所示,8比特图像可视为由8个1比特平面组成。

图3.14a显示了一幅8比特灰度级图像,b到i是这幅图像由高到低的8个1比特平面。可以观察到在高4位的比特面中包含了大量具有视觉意义的数据,低四位则几乎只有噪声。

用比特平面分层技术对图像压缩来说很有用,可以让有效数据得到保留,而冗余数据剔除掉。如图3.15所示,可以观察到,高四位比特面重建的图像在视觉上更接近原图像,只存储这4个平面占用的存储容量是原图像的一半。

习题3.5*

(a)将低有效比特平面设为零对图像的直方图有什么影响?
(b)将高有效比特平面设为零对图像的直方图有什么影响?

(a)具有不同灰度级值的像素数量会减少,从而导致直方图中低阶灰度区间的像素计数减少。由于图像中的像素总数保持不变,这将导致高阶灰度区间的像素计数增加,从而使得这些区间的直方图峰值变高。这种变化会使图像变得更亮,但其色调(或色调范围)会减少。

(b)最明显的效果是图像会显著变暗。例如,去掉最高位会使得8位图像中的最大亮度值限制为127。由于图像中像素总数保持不变,这将导致某些直方图峰值的高度增加。直方图的整体形状将变得更高且更窄,且不会有任何直方图分量值超过127。

习题3.3

在这里插入图片描述
(a) 生成各个比特平面的变换是基于八个二进制变量真值表的映射。在这个真值表中,图像值为 0 到 127 时,第 8 位的值为 0,而图像值为 128 到 255 时,第 8 位的值为 1。因此,生成==最高有效位(第 8 位)==平面的变换函数为:当 r r r 在区间 [0,127] 内时, T ( r ) = 0 T(r) = 0 T(r)=0;当 r r r 在区间 [128,255] 内时, T ( r ) = 1 T(r) = 1 T(r)=1

继续使用真值表的概念,生成第 7 位平面的图像所需的变换函数会在图像值位于区间 [0,63] 时输出 0,位于区间 [64,127] 时输出 1,位于区间 [128,191] 时输出 0,位于区间 [192,255] 时输出 1。对于第 6 位平面,变换函数会在图像值位于区间 [0,31] 时输出 0,位于区间 [32,63] 时输出 1,位于区间 [64,91] 时输出 0,依此类推。生成第 5 位平面的变换函数会在图像值位于区间 [0,15] 时输出 0,位于区间 [16,31] 时输出 1,依此类推。对于其他比特平面,使用类似的方法。最后,生成最低位平面的变换函数会根据字节值是偶数还是奇数,交替输出 0 和 1。

如你所见,随着比特平面顺序的降低,变换函数中的“翻转”次数会增加。这就是为什么最低位平面是“最繁忙”的原因。

3 直方图处理

一幅 M × N M×N M×N大小的灰度图像 f f f的灰度级为 r k r_k rk f f f的归一化直方图定义为 p ( r k ) = n k M N , k = 0 , 1 , 2 , . . . , L − 1 p(r_k)=\frac{n_k}{MN},k=0,1,2,...,L-1 p(rk)=MNnkk=0,1,2,...,L1式中, n k n_k nk f f f r k r_k rk的像素数量。我们将归一化直方图简单的称为直方图或图像直方图。 ∑ k = 0 L − 1 p ( r k ) = 1 \sum_{k=0}^{L-1}p(r_k)=1 k=0L1p(rk)=1 p ( r k ) p(r_k) p(rk)的分量是对图像中出现的灰度级的概率估计。

图3.16所示,直方图的形状与图像的外观有关。
(a)暗图像的直方图分量集中在灰度级的低端;
(b)亮图像的直方图分量集中在灰度级的高端;
(c)低对比度图像的直方图分量集中在灰度级的中间,对单色图像而言意味着暗淡的灰色外观;
(d)高对比度图像的直方图分量覆盖了整个灰度级范围,且像素的分布也很均匀,分量高度也基本相同。

综上我们可以得出结论:像素占据整个灰度级范围且均匀分布的图像,将具有高对比度的外观和多种灰色调。

高对比度图像的特征是:显示大量灰度细节并具有高动态范围的一幅图像

2018甄题【计算题】

下面给出了处在浅色背景上的某个水果的20级灰度图像的直方图。每个数字分别表示图像中对应该灰度级的像素个数,左端表示黑色,右端表示白色。假定对于该水果的图像,相邻像素间距等效为实物间距 1.5 毫米 ( m m ) 1.5毫米(mm) 1.5毫米(mm)。已知该水果可能是一个金桔、橙子或者柚子,请问最有可能是哪种水果?给出推算过程。 [ 0 , 100 , 200 , 300 , 500 , 600 , 500 , 300 , 200 , 100 , 200 , 500 , 3000 , 8000 , 20000 , 8000 , 3000 , 500 , 100 , 0 ] [0,100,200,300,500,600,500,300,200,100,200,500,3000,8000,20000,8000,3000,500,100,0] [01002003005006005003002001002005003000800020000800030005001000]

由于是浅色背景上的深色水果,故水果像素分布在直方图低端,其像素总数大致为: 100 + 200 + 300 + 500 + 600 + 500 + 300 + 200 + 100 = 2800 100+200+300+500+600+500+300+200+100=2800 100+200+300+500+600+500+300+200+100=2800又,可能的水果形状都大致为圆形,故所求水果的面积为: π r 2 πr^2 πr2。由题意可得,单个像素面积为: 1.5 × 1.5 = 2.25   mm 2 1.5 \times 1.5 = 2.25 \, \text{mm}^2 1.5×1.5=2.25mm2。于是有 π r 2 = 2800 × 2.25 = 6300 mm 2 ⟹ r ≈ 44.8 m m = 4.48 c m πr^2=2800×2.25=6300\text{mm}^2\Longrightarrow r≈44.8mm=4.48cm πr2=2800×2.25=6300mm2r44.8mm=4.48cm于是,该水果直径约为 8.96 8.96 8.96厘米,最有可能是一个橙子。

2003甄题【计算题】

在这里插入图片描述
第一个病人瘤大小没变,密度变高了,因为代表瘤的高位直方图右移了
第二个病人瘤变小了,密度也变低了

2004甄题【计算题】

在这里插入图片描述
【答】(1) [ 2   3   4   3   3   5   1   4 ] [2\ 3\ 4\ 3\ 3\ 5\ 1\ 4] [2 3 4 3 3 5 1 4]
(2)令 g ( D ) = 2 g(D)=2 g(D)=2可得 D = 0 或 D = 4 D=0或D=4 D=0D=4,由于 f ( x , y ) f(x,y) f(x,y)中像素值为0和4的只有5个,故,像素数为5。

2005甄题【计算题】

在这里插入图片描述
(1) [ 3   1   2   1   2   2   1   2   2   2   0   2   0   0   2   3 ] [3\ 1\ 2\ 1\ 2\ 2\ 1\ 2\ 2\ 2\ 0 \ 2\ 0\ 0\ 2\ 3] [3 1 2 1 2 2 1 2 2 2 0 2 0 0 2 3]

(2)【这问不用写了】

r k r_k rk0123456789101112131415
n k n_k nk3121221222020023
p r ( r k ) = n k / 25 p_r(r_k)=n_k/25 pr(rk)=nk/250.120.040.080.040.080.080.040.080.080.0800.08000.080.12

H = − ∑ k = 0 15 p r ( r k ) l o g 2 p r ( r k ) = 2.9 H = -\sum^{15}_{k=0}p_r(r_k)log_2p_r(r_k)=2.9 H=k=015pr(rk)log2pr(rk)=2.9

(3)综合光密度=175,方差=25.3【不用做此问】
(4) H B ( 15 ) = 9 H_B(15)=9 HB(15)=9【不用做此问】
(5)T的直方图为 T = [ 3   1   2   1   2   2   1   2   2   2   0   2   0   0   2   3 ] + [ 2   67   51   60   55   88   30   10   56   78   90   16   18   16   15   19 ] = [ 5   68   53   61   57   90   31   12   58   80   90   18   18   16   17   22 ] \begin{align*}T&=[3\ 1\ 2\ 1\ 2\ 2\ 1\ 2\ 2\ 2\ 0 \ 2\ 0\ 0\ 2\ 3]\\&+[2\ 67\ 51\ 60\ 55\ 88\ 30\ 10\ 56\ 78\ 90 \ 16\ 18\ 16\ 15\ 19]\\&=[5\ 68\ 53\ 61\ 57\ 90\ 31\ 12\ 58\ 80 \ 90 \ 18\ 18\ 16\ 17\ 22]\end{align*} T=[3 1 2 1 2 2 1 2 2 2 0 2 0 0 2 3]+[2 67 51 60 55 88 30 10 56 78 90 16 18 16 15 19]=[5 68 53 61 57 90 31 12 58 80 90 18 18 16 17 22]

2014甄题【简答题】

请描述一幅灰度图像的直方图分布与图像视觉效果之间的关系。

  1. 对比度:直方图分布广泛表示高对比度,图像清晰;集中则表示低对比度,图像平淡。
  2. 亮度:直方图分布偏右则图像偏亮,偏左则图像偏暗。
  3. 细节:多个高峰意味着丰富的细节,少量高峰则表示简单或单一的图像内容。
  4. 噪声:直方图中的随机波动反映图像的噪声水平。

2015甄题【简答题】

图像亮度增大或减小时,图像直方图如何变化?当图像对比度增大或减小时,图像直方图如何变化?

  • 亮度增大:直方图整体向右移动,表示高灰度值的像素增多,低灰度值的像素减少。
  • 亮度减小:直方图整体向左移动,表示低灰度值的像素增多,高灰度值的像素减少。
  • 对比度增大:直方图的分布范围增大,像素在高灰度和低灰度之间分布更广,增强了明暗差异。
  • 对比度减小:直方图变得更集中,像素主要集中在中间灰度值,导致图像显得平淡,细节减少。

2015甄题【解答题】

(10分)图像的直方图基本上可以描述图像的概貌。就下面所给的(a)、(b)、(c)、(d)四个直方图,试分析和比较对应的四幅图像的明暗状况和对比度高低等特征。
在这里插入图片描述

(a)直方图向左偏移,主要集中在低灰度值。图像整体较暗,主要呈现阴影部分,对比度低。

(b)直方图向右偏移,主要集中在高灰度值。图像整体较亮,主要表现为高光部分,对比度低。

(c)直方图分量集中在中间,几乎没有极端值,缺乏明显的亮部和暗部,对比度低。

(d)直方图呈现多峰结构,分布较广。图像的明暗变化丰富,既有较暗的部分,也有较亮的部分。对比度高,能够展现细节和纹理。

可考题【简答题】

假定有两幅关于一台球桌的四位的数字化图像(白色为 15)。两幅图像都从相同的照相机位置拍摄,其中一幅图像刚刚是最后比赛结束之前的镜头(桌上还有最后三个白球),另一幅图恰好是桌子被清理干净之后的情形,图像的直方图如下。试问,哪幅图中有球说明原因。
图像 1 [ 0   100   400   700   800   600   500   600   500   400   400   600   400   100   0   0 ] 图像 1 [0\ 100\ 400\ 700\ 800\ 600\ 500\ 600\ 500\ 400\ 400\ 600\ 400\ 100\ 0\ 0] 图像1[0 100 400 700 800 600 500 600 500 400 400 600 400 100 0 0] 图像 2 [ 0   100   300   700   700   800   500   600   500   400   400   600   500   200   0   0 ] 图像 2 [0\ 100\ 300\ 700\ 700\ 800\ 500\ 600\ 500\ 400\ 400\ 600\ 500\ 200\ 0\ 0] 图像2[0 100 300 700 700 800 500 600 500 400 400 600 500 200 0 0]

第2幅图中含球,因为从直方图为看,图像2的直方图中取 12,13等较大的灰度值的像素较多,取灰度2的像素较少,其他一样,这说明,图2的白色区域多,黑色区域少,所以图2中含有白色的球。

可考题【计算题】

下面是两幅大小为 100×100,灰度级为 16 的图像的直方图。求它们相加后所得图像的直方图。
[ 0   0   0   10000   0   0   0   0   0   0   0   0   0   0   0   0 ] [0\ 0\ 0\ 10000\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0] [0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0] [ 600   1000   1800   2500   1900   1100   800   200   0   0   0   0   0   0   0   0 ] [600\ 1000\ 1800\ 2500\ 1900\ 1100\ 800\ 200\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0] [600 1000 1800 2500 1900 1100 800 200 0 0 0 0 0 0 0 0]

[ 600   1000   1800   12500   1900   1100   800   200   0   0   0   0   0   0   0   0 ] [600\ 1000\ 1800\ 12500\ 1900\ 1100\ 800\ 200\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0] [600 1000 1800 12500 1900 1100 800 200 0 0 0 0 0 0 0 0]

可考题【计算题】

有一幅在灰色背景下的黑白足球的图像,直方图如下所示。足球的直径为 230 m m 230mm 230mm,其像素间距为多少?
[ 0   520   920   490   30   40   5910   240   40   60   50   80   20   80   440   960   420   0 ] [0\ 520\ 920\ 490\ 30\ 40\ 5910\ 240\ 40\ 60\ 50\ 80\ 20\ 80\ 440\ 960\ 420\ 0] [0 520 920 490 30 40 5910 240 40 60 50 80 20 80 440 960 420 0]

由于是在灰色背景上放着一个黑白足球,故足球的像素分布在直方图底端和高端,其像素总数大致为: 520 + 920 + 490 + 440 + 960 + 420 = 3750 520+920+490+440+960+420=3750 520+920+490+440+960+420=3750已知足球的直径为 230 mm 230\text{mm} 230mm,其面积为 π × 11 5 2 π×115^2 π×1152。故单个像素面积为 π × 11 5 2 3750 ≈ 11.1 mm 2 \frac{π×115^2}{3750}≈11.1\text{mm}^2 3750π×115211.1mm2若每像素边长为 a a a(因像素为正方形),则 a 2 = 11.1 a^2=11.1 a2=11.1,解得 a = 11.1 ≈ 3.33 mm a=\sqrt{11.1}≈3.33\text{mm} a=11.1 3.33mm。即像素间距为 3.33 mm 3.33\text{mm} 3.33mm

可考题【计算题】

以下是一个 32 级灰度图像(0 表示黑色),其中包含了在灰色背景上的,带有一个白色标记的,直径是 12 英寸的黑色留声机唱片。下面给出了图像的直方图。 [ 0   0   0   0   100   200   2000   6000   2000   200   100   0   0   200   3000   9000   3000   200   0   0   50   100   400   100   50   0   0   0   0   0   0   0 ] [0\ 0\ 0\ 0\ 100\ 200\ 2000\ 6000\ 2000\ 200\ 100\ 0\ 0\ 200\ 3000\ 9000\ 3000\ 200\ 0\ 0\ 50\ 100\ 400\ 100\ 50\ 0\ 0\ 0\ 0\ 0\ 0\ 0] [0 0 0 0 100 200 2000 6000 2000 200 100 0 0 200 3000 9000 3000 200 0 0 50 100 400 100 50 0 0 0 0 0 0 0]试问像素间距是多大?标记的尺寸是多少?

由于是灰色背景上带白色标记的黑色留声机唱片,故唱片像素分布在直方图底端和高端,其像素总数大致为: 100 + 200 + 2000 + 6000 + 2000 + 200 + 100 + 50 + 100 + 400 + 100 + 50 = 11300 100+200+2000+6000+2000+200+100+50+100+400+100+50=11300 100+200+2000+6000+2000+200+100+50+100+400+100+50=11300由于唱片直径为12英寸,其面积为 36 π 平方英寸 36π平方英寸 36π平方英寸。于是单个像素面积为 36 π 11300 = 0.01 平方英寸 \frac{36π}{11300}=0.01平方英寸 1130036π=0.01平方英寸若每像素边长为 a a a(因像素为正方形),则 a 2 = 0.01 a^2=0.01 a2=0.01,解得 a = 0.01 = 0.1 英寸 = 2.54 mm a=\sqrt{0.01}=0.1\text{英寸}=2.54\text{mm} a=0.01 =0.1英寸=2.54mm。即像素间距为 2.54 mm 2.54\text{mm} 2.54mm

所求白色标记的尺寸为: 0.01 × 700 = 7 平方英寸 0.01×700=7平方英寸 0.01×700=7平方英寸

补充:1英寸=2.54厘米

可考题【论述题】

画出下面两个 16 级的直方图。哪一个相应于梯度幅度图像(可能加了一个常数)?
[ 0   0   0   100   200   300   500   800   500   300   200   100   0   0   0   0   ] [0\ 0\ 0\ 100\ 200\ 300\ 500\ 800\ 500\ 300\ 200\ 100\ 0\ 0\ 0\ 0\ ] [0 0 0 100 200 300 500 800 500 300 200 100 0 0 0 0 ]
[ 0   0   0   100   300   500   400   200   300   500   300   200   100   100   0   0 ] [0\ 0\ 0\ 100\ 300\ 500\ 400\ 200\ 300\ 500\ 300\ 200\ 100\ 100\ 0\ 0] [0 0 0 100 300 500 400 200 300 500 300 200 100 100 0 0]

直方图1

像素数量
800	|								*
700	|								*
600	|								*
500	|							*	*	*
400	|							*	*	*
300	|						*	*	*	*	*	
200	| 					* 	*	*	*	*	*	*	
100	|				*	* 	*	*	*	*	*	*	*	
  0	|------------------------------------------------------------------ 灰度级
        0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

直方图2

像素数量
800	|
700	|
600	|
500	|						*				*
400	|						*	*			*
300	|					*	*	*		*	*	*
200	| 					* 	*	*	*	*	*	*	*
100	|				*	* 	*	*	*	*	*	*	*	*	*
  0	|------------------------------------------------------------------ 灰度级
        0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

直方图 1 更可能对应于 梯度幅度图像,因为它在灰度级上有明显的像素集中和高峰,表明存在强烈的边缘或明暗对比。梯度幅度图像通常表现出较强的亮度变化,直方图 1 的特征与此一致。
直方图 2 则可能对应于更均衡或复杂细节的图像,虽然包含多个灰度级的像素分布,但不如直方图 1 明显适合梯度幅度的特征。

3.1 直方图均衡化

直方图均衡化【冈塞雷斯第四版】

令变量 r r r 表示待处理图像的灰度级, s s s表示经灰度映射后的灰度级。考虑变换 s = T ( r ) , r ∈ [ 0 , L − 1 ] s=T(r),r∈[0,L-1] s=T(r)r[0,L1]该变换函数需要满足

  1. T ( r ) T(r) T(r)单调递增:保证输出的灰度值不小于对应的输入值。
  2. T ( r ) ∈ [ 0 , L − 1 ] T(r)∈[0,L-1] T(r)[0,L1]:保证输出灰度的范围与输入的范围相同。
  3. 若需要逆变换,则条件1改为严格单调递增,以保证 s s s返回到 r r r的映射一一对应。

图3.17(a)是满足条件1和条件2,但不满足条件3的一个函数。图3.17(b)是满足三个条件的函数。

直方图均衡化函数定义为 s k = T ( r k ) = ( L − 1 ) ∑ j = 0 k p r ( r j ) = ( L − 1 ) ∑ j = 0 k n j M N , k = 0 , 1 , 2 , . . . , L − 1 s_k=T(r_k)=(L-1)\sum_{j=0}^kp_r(r_j)=(L-1)\sum_{j=0}^k\frac{n_j}{MN},k=0,1,2,...,L-1 sk=T(rk)=(L1)j=0kpr(rj)=(L1)j=0kMNnjk=0,1,2,...,L1

习题3.9【证明题】

在这里插入图片描述
(b) 如果灰度级 r k r_k rk k = 1 , 2 , . . . , L − 1 k = 1,2,...,L- 1 k=12,...,L1) 非空,那么 T ( r k ) T(r_k) T(rk)严格单调增加。这意味着映射是一一对应的,即正反变换都是单值。

习题3.10

在这里插入图片描述
这个问题的目的是让学生思考直方图的意义,并得出结论:直方图不包含图像的空间属性信息。因此,只有当其中一幅(两幅)图像恒定时,才能用问题陈述中的操作形成的图像直方图来确定原始直方图。在 (d) 项中,我们有一个附加条件,即 g ( x , y ) g(x,y) g(x,y) 的任何像素都不能为 0。由于所给直方图没有归一化,所以 h f ( r k ) h_f(r_k) hf(rk) f ( x , y ) f(x,y) f(x,y)在灰度 r k r_k rk处的像素数。假设 g ( x , y ) g(x,y) g(x,y) 中所有像素的值都是常数 c,图像的像素都被假设为正值。最后,让 u k u_k uk 表示通过问题陈述中给出的任意算术运算形成的图像像素的灰度。在上述条件下,直方图的确定过程如下:
(a)对于所有 k k k,我们通过令 u k = r k + c u_k=r_k+c uk=rk+c,计算 f f f g g g的和来获得直方图 h + ( u k ) h^+(u_k) h+(uk)。换言之, h + h_+ h+的分量值(高度)与 h f h_f hf的分量值(高度)相同,但是它们在轴上的位置右移了一个常数c。

3.1.1 举例说明如何计算

【题】假设一幅大小为 64 × 64 64×64 64×64像素 ( M N = 4096 ) (MN=4096) MN=4096 3 3 3比特图像 ( L = 8 ) (L=8) L=8具有表3.1中的灰度分布,其中灰度级是区间 [ 0 , L − 1 ] = [ 0 , 7 ] [0,L-1]=[0,7] [0,L1]=[0,7]内的整数。这幅图像的直方图如图3.19a所示。求直方图均衡化变换函数的值。

灰度级 r k r_k rk01234567
各灰度级概率分布 p r ( r k ) p_r(r_k) pr(rk)0.190.250.210.160.080.060.030.02

【答】
由均衡化公式 s k = T ( r k ) = ( L − 1 ) ∑ j = 0 k p r ( r j ) s_k=T(r_k)=(L-1)\sum_{j=0}^kp_r(r_j) sk=T(rk)=(L1)j=0kpr(rj)可得
s 0 = T ( r 0 ) = 7 ∑ j = 0 0 p r ( r j ) = 7 × p r ( r 0 ) = 1.33 s_0=T(r_0)=7\sum_{j=0}^0p_r(r_j)=7×p_r(r_0)=1.33 s0=T(r0)=7j=00pr(rj)=7×pr(r0)=1.33同理 s 1 = 3.08 , s 2 = 4.55 , s 3 = 5.67 , s 4 = 6.23 , s 5 = 6.65 , s 6 = 6.86 , s 7 = 7.00 s_1=3.08,s_2=4.55,s_3=5.67,s_4=6.23,s_5=6.65,s_6=6.86,s_7=7.00 s1=3.08s2=4.55s3=5.67s4=6.23s5=6.65s6=6.86s7=7.00将上述值四舍五入 s 0 = 1 , s 1 = 3 , s 2 = 5 , s 3 = 6 , s 4 = 6 , s 5 = 7 , s 6 = 7 , s 7 = 7 s_0=1,s_1=3,s_2=5,s_3=6,s_4=6,s_5=7,s_6=7,s_7=7 s0=1s1=3s2=5s3=6s4=6s5=7s6=7s7=7观察 s s s的下标【原始灰度级】和等号右边【映射后的灰度级】可以得到映射关系【 r → s r→s rs
0 → 1 ; 1 → 3 ; 2 → 5 ; 3 , 4 → 6 ; 5 , 6 , 7 → 7 0→1;1→3;2→5;3,4→6;5,6,7→7 0113253,465,6,77将原始灰度级下的值全部映射 p s ( s 1 ) = p r ( r 0 ) = 0.19 p_s(s_1)=p_r(r_0)=0.19 ps(s1)=pr(r0)=0.19 p s ( s 3 ) = p r ( r 1 ) = 0.25 p_s(s_3)=p_r(r_1)=0.25 ps(s3)=pr(r1)=0.25 p s ( s 5 ) = p r ( r 2 ) = 0.21 p_s(s_5)=p_r(r_2)=0.21 ps(s5)=pr(r2)=0.21 p s ( s 6 ) = p r ( r 3 ) + p r ( r 4 ) = 0.24 p_s(s_6)=p_r(r_3)+p_r(r_4)=0.24 ps(s6)=pr(r3)+pr(r4)=0.24 p s ( s 7 ) = p r ( r 5 ) + p r ( r 6 ) + p r ( r 7 ) = 0.11 p_s(s_7)=p_r(r_5)+p_r(r_6)+p_r(r_7)=0.11 ps(s7)=pr(r5)+pr(r6)+pr(r7)=0.11 其余灰度级的值为0。上述计算过程可用一个表来解释

灰度级01234567
各灰度级概率分布 p r ( r k ) p_r(r_k) pr(rk)0.190.250.210.160.080.060.030.02
累积直方图 t k t_k tk0.190.440.650.810.890.950.981.00
s k = i n t [ 7 × t k + 0.5 ] s_k=int[7×t_k+0.5] sk=int[7×tk+0.5]13566777
确定映射关系0→11→32→53→64→65→76→77→7
均衡化后的直方图 p s ( s k ) p_s(s_k) ps(sk)00.1900.2500.210.240.11

考试中可仅画上表

2010甄题【证明题】

证明:直方图均衡化函数就是图像的累积直方图

假设给定一幅图像,其像素灰度级范围为 [ 0 , L − 1 ] [0, L-1] [0,L1],其概率密度函数(PDF)为 p r ( r ) p_r(r) pr(r),并令 p s ( s ) p_s(s) ps(s)表示均衡化后图像的PDF。对灰度映射函数 s = T ( r ) = ( L − 1 ) ∫ 0 r p r ( w ) d w s=T(r)=(L-1)\int_0^rp_r(w)dw s=T(r)=(L1)0rpr(w)dw两端求积分,得 d s d r = d T ( r ) d s = ( L − 1 ) d ∫ 0 r p r ( w ) d w d r = ( L − 1 ) p r ( r ) \frac{ds}{dr}=\frac{dT(r)}{ds}=(L-1)\frac{d\int_0^rp_r(w)dw}{dr}=(L-1)p_r(r) drds=dsdT(r)=(L1)drd0rpr(w)dw=(L1)pr(r)代入概率密度函数之间的变换关系 p s ( s ) = p r ( r ) ∣ d r d s ∣ p_s(s)=p_r(r)\left| \frac{dr}{ds}\right| ps(s)=pr(r) dsdr 可得 p s ( s ) = p r ( r ) ∣ 1 ( L − 1 ) p r ( r ) ∣ = 1 L − 1 , 0 ≤ s ≤ L − 1 p_s(s)=p_r(r)\left| \frac{1}{(L-1)p_r(r)}\right|=\frac{1}{L-1},0≤s≤L-1 ps(s)=pr(r) (L1)pr(r)1 =L11,0sL1于是 s ∼ U [ 0 , L − 1 ] s\sim U[0,L-1] sU[0,L1],证明结束。

2011甄题【计算题】

(10 分)已知一幅图像的灰度级为8,图像的左边一半为深灰色,其灰度值为1,右边一半为黑色,其灰度值为0。试对此图像进行直方图均衡化处理,并描述处理后的图像视觉效果。

由已知可得 p 0 ( r 0 ) = 0.5 , p 1 ( r 1 ) = 0.5 p_0(r_0)=0.5,p_1(r_1)=0.5 p0(r0)=0.5p1(r1)=0.5,其他灰度级的概率密度为0。由变换函数 s k = T ( r k ) = ( L − 1 ) ∑ j = 0 k p r ( r j ) s_k=T(r_k)=(L-1)\sum_{j=0}^kp_r(r_j) sk=T(rk)=(L1)j=0kpr(rj)可得 s 0 = 7 × ∑ j = 0 0 p r ( r 0 ) = 7 × 0.5 = 3.5 s_0=7×\sum_{j=0}^0p_r(r_0)=7×0.5=3.5 s0=7×j=00pr(r0)=7×0.5=3.5 s 1 = 7 × ∑ j = 0 1 p r ( r 1 ) = 7 × 1 = 7 s_1=7×\sum_{j=0}^1p_r(r_1)=7×1=7 s1=7×j=01pr(r1)=7×1=7四舍五入有 s 0 = 4 , s 1 = 7 s_0=4,s_1=7 s0=4s1=7。即, r = 0 → s = 4 ; r = 1 → s = 7 r=0→s=4;r=1→s=7 r=0s=4r=1s=7。综上,均衡化后的图像

  • 左边一半(最初灰度值为1):现在灰度值为7。
  • 右边一半(最初灰度值为0):现在灰度值为4。

通过直方图均衡化,左半部分的深灰色变成了很浅的灰白色,而右半部分的黑色变成了中间灰色。

2008、2018甄题【简答题】

什么是直方图均衡化?

直方图均衡化旨在通过调整图像的灰度级分布,使得图像的直方图尽可能均匀分布,从而扩展图像灰度级的动态范围,增强图像的对比度,提高视觉效果。

习题3.6【2013、2015、2019甄题【简答题】】

甄题题目:为什么使用直方图均衡化得不到完全平坦的直方图?
习题:说明离散直方图均衡化技术通常不产生平坦直方图的原因。

直方图均衡化的作用只是将直方图的分量在灰度级上进行重新映射。为了获得完全平坦的直方图,通常需要将图像中的像素值重新分配,使得每个灰度级都有相同数量的像素(即每个灰度级有 n / L n/L n/L 个像素,其中 L L L 是灰度级的数量, n = M N n = MN n=MN 是像素总数)。而直方图均衡化方法并未规定这种(人工的)像素再分配过程。

习题3.7【2013、2020甄题【简答题】】

(2013、2020)设已用直方图均衡化技术对一幅数字图像进行增强,如果再用这一方法对所得结果进行增强,会不会改变其结果?为什么?
(习题)假设一幅数字图像已进行了直方图均衡化。证明(对直方图均衡化后的图像)第二次直方图均衡化的结果与第一次的结果相同。

n r j n_{r_j} nrj为灰度级 r j r_j rj的像素数。一次直方图均衡化 s k = T ( r k ) = ( L − 1 ) ∑ j = 0 k p r ( r j ) = ( L − 1 ) ∑ j = 0 k n r j M N = L − 1 N M ∑ j = 0 k n r j s_k=T(r_k)=(L-1)\sum^k_{j=0}p_r(r_j)=(L-1)\sum^k_{j=0}\frac{n_{r_j}}{MN}=\frac{L-1}{NM}\sum^k_{j=0}n_{r_j} sk=T(rk)=(L1)j=0kpr(rj)=(L1)j=0kMNnrj=NML1j=0knrj因为 r k r_k rk的每个像素都被映射到 s k s_k sk,因此 n s k = n r k n_{s_k}=n_{r_k} nsk=nrk。再次直方图均衡化得 v k = T ( s k ) = L − 1 M N ∑ j = 0 k n s j = L − 1 M N ∑ j = 0 k n r j = s k v_k=T(s_k)=\frac{L-1}{MN}\sum^k_{j=0}n_{s_j}=\frac{L-1}{MN}\sum^k_{j=0}n_{r_j}=s_k vk=T(sk)=MNL1j=0knsj=MNL1j=0knrj=sk这表明,第二次直方图均衡化将产生与第一次直方图均衡化相同的结果(假设舍入误差可以忽略不计)。

2008、2012甄题【计算题】

(10 分)给定一幅图像,其概率密度函数为 p r ( r ) = A e − r p_r(r)=Ae^{-r} pr(r)=Aer,其中 r r r为从 0 0 0 b b b变化的灰度级变量, A A A为归一化因子。试计算变换函数 s = T ( r ) s=T(r) s=T(r),其中 s s s为变换后图像的灰度级,使得变换后图像的概率密度函数为 p s ( s ) = B s e − s 2 p_s(s)=Bse^{-s^2} ps(s)=Bses2,其中 s s s的变化范围为 0 0 0 b b b B B B为归一化因子。

由概率密度函数之间的变换关系 p s ( s ) = p r ( r ) ∣ d r d s ∣ p_s(s)=p_r(r)\left| \frac{dr}{ds}\right| ps(s)=pr(r) dsdr 与已知条件 p r ( r ) = A e − r p_r(r)=Ae^{-r} pr(r)=Aer p s ( s ) = B s e − s 2 p_s(s)=Bse^{-s^2} ps(s)=Bses2 可得 B s e − s 2 d s = A e − r d r Bse^{-s^2}ds=Ae^{-r}dr Bses2ds=Aerdr。两边积分并消去积分常数,得到 ∫ B s e − s 2 d s = ∫ A e − r d r ⟹ B 2 ( 1 − e − s 2 ) = A ( 1 − e − r ) ∫Bse^{-s^2}ds = ∫Ae^{-r}dr \Longrightarrow \frac{B}{2}(1-e^{-s^2}) = A(1-e^{-r}) Bses2ds=Aerdr2B(1es2)=A(1er)整理得 s = − ln [ 1 − 2 A B ( 1 − e − r ) ] s=\sqrt{-\text{ln}\left[1-\frac{2A}{B}(1-e^{-r})\right]} s=ln[1B2A(1er)] 计算归一化因子 A A A B B B A ∫ 0 b e − r   d r = 1 ⇒ A ( 1 − e − b ) = 1 ⟹ A = 1 1 − e − b A \int_0^b e^{-r} \, dr = 1 \Rightarrow A (1 - e^{-b}) = 1 \Longrightarrow A = \frac{1}{1 - e^{-b}} A0berdr=1A(1eb)=1A=1eb1 B ∫ 0 b s e − s 2   d s = 1 ⇒ B 2 ( 1 − e − b 2 ) = 1 ⟹ B = 2 1 − e − b 2 B \int_0^b s e^{-s^2} \, ds = 1 \Rightarrow \frac{B}{2} (1 - e^{-b^2}) = 1\Longrightarrow B = \frac{2}{1 - e^{-b^2}} B0bses2ds=12B(1eb2)=1B=1eb22综上 s = T ( r ) = − ln [ 1 − 1 − e − b 2 1 − e − b ( 1 − e − r ) ] s=T(r)=\sqrt{-\text{ln}\left[1-\frac{1-e^{-b^2}}{1-e^{-b}}(1-e^{-r})\right]} s=T(r)=ln[11eb1eb2(1er)]

2005、2006、2007、2009甄题【计算题】

(10分)假定一幅像素数为 64 × 64 64×64 64×64,灰度级为8级的图像A,其灰度级分布如下表( k , k = 0 , 1 , … , 7 k,k=0,1,…,7 kk=0,1,,7代表灰度, n k n_k nk代表对应灰度的像素数, p k p_k pk为对应频数),对其进行均衡化处理得图像 B B B,并画出图像 B B B 的直方图。

k k k k = 0 k=0 k=0 k = 1 k=1 k=1 k = 2 k=2 k=2 k = 3 k=3 k=3 k = 4 k=4 k=4 k = 5 k=5 k=5 k = 6 k=6 k=6 k = 7 k=7 k=7
n k n_k nk790102385065632924512281
p k p_k pk0.190.250.210.160.080.060.030.02

灰度级 r k r_k rk01234567
各灰度级概率分布 p r ( r k ) p_r(r_k) pr(rk)0.190.250.210.160.080.060.030.02
原始累积直方图 t k t_k tk0.190.440.650.810.890.950.981.00
s k = int [ 7 × t k + 0.5 ] s_k=\text{int}[7×t_k+0.5] sk=int[7×tk+0.5]13566777
确定映射关系0→11→32→53→64→65→76→77→7
均衡化后的直方图 p s ( s k ) p_s(s_k) ps(sk)00.1900.2500.210.240.11
概率密度				
	|					
0.25|				*		
0.24|				*			*
0.21|				*		*	*	
0.19| 		* 		*		*	*		
0.11|		* 		*		*	*	*		
  0	|------------------------------------ 灰度级
        0	1	2	3	4	5	6	7	

2013甄题【计算题】

在这里插入图片描述
在这里插入图片描述

2015甄题【计算题】

在这里插入图片描述

灰度级 r k r_k rk0123456789101112131415
像素数 n k n_k nk3244114123000000
各灰度级概率分布 p r ( r k ) = n k 25 p_r(r_k)=\frac{n_k}{25} pr(rk)=25nk0.120.080.160.160.040.040.160.040.080.12000000
原始累积直方图 t k t_k tk0.120.200.360.520.560.600.760.800.881.00000000
s k = int [ 7 × t k + 0.5 ] s_k=\text{int}[7×t_k+0.5] sk=int[7×tk+0.5]23588911121315000000
确定映射关系0→21→32→53→84→85→96→117→128→139→15
均衡化后的直方图 p s ( s k ) p_s(s_k) ps(sk)000.120.0800.16000.200.0400.160.040.0800.12

2016甄题【计算题】

下表为一幅总像素为 N = 64 × 64 N=64×64 N=64×64的数字图像(灰度级为8)的各灰度级(出现的概率)分布。要求将此图像进行直方图均衡化,计算出均衡化后的直方图。

原图像灰度级 r k r_k rk r 0 = 0 r_0=0 r0=0 r 1 = 1 r_1=1 r1=1 r 2 = 2 r_2=2 r2=2 r 3 = 3 r_3=3 r3=3 r 4 = 4 r_4=4 r4=4 r 5 = 5 r_5=5 r5=5 r 6 = 6 r_6=6 r6=6 r 7 = 7 r_7=7 r7=7
原各灰度级像素个数 n k n_k nk790102385065632924512281
原分布概率 p r ( r k ) p_r(r_k) pr(rk)0.190.250.210.160.080.060.030.02

【答】

灰度级 r k r_k rk01234567
各灰度级概率分布 p r ( r k ) p_r(r_k) pr(rk)0.190.250.210.160.080.060.030.02
原始累积直方图 t k t_k tk0.190.440.650.810.890.950.981.00
s k = int [ 7 × t k + 0.5 ] s_k=\text{int}[7×t_k+0.5] sk=int[7×tk+0.5]13566777
确定映射关系0→11→32→53→64→65→76→77→7
均衡化后的直方图 p s ( s k ) p_s(s_k) ps(sk)00.1900.2500.210.240.11

2014、2018、2020、2021、2022【计算题】

设一幅8级图像具有如下表所示的灰度概率分布,请对其进行直方图均衡化。

灰度级01234567
各灰度级概率0.140.220.250.170.100.060.030.03

【答】

灰度级 r k r_k rk01234567
各灰度级概率分布 p r ( r k ) p_r(r_k) pr(rk)0.140.220.250.170.100.060.030.03
原始累积直方图 t k t_k tk0.140.360.610.780.880.940.971.00
s k = i n t [ 7 × t k + 0.5 ] s_k=int[7×t_k+0.5] sk=int[7×tk+0.5]13456777
确定映射关系0→11→32→43→54→65→76→77→7
均衡化后的直方图 p s ( s k ) p_s(s_k) ps(sk)00.1400.220.250.170.100.12

2023甄题【计算题】

灰度级01234567
概率0.240.200.160.050.190.040.050.07

【答】

灰度级 r k r_k rk01234567
各灰度级概率分布 p r ( r k ) p_r(r_k) pr(rk)0.240.200.160.050.190.040.050.07
原始累积直方图 t k t_k tk0.240.440.600.650.840.880.931.00
s k = int [ 7 × t k + 0.5 ] s_k=\text{int}[7×t_k+0.5] sk=int[7×tk+0.5]23456677
确定映射关系0→21→32→43→54→65→66→77→7
均衡化后的直方图 p s ( s k ) p_s(s_k) ps(sk)000.240.200.160.050.230.12

2024甄题【计算题】

设一幅8级图像具有如下表所示的灰度概率分布,请对其进行直方图均衡化。

灰度级 r k r_k rk r 0 r_0 r0 r 1 r_1 r1 r 2 r_2 r2 r 3 r_3 r3 r 4 r_4 r4 r 5 r_5 r5 r 6 r_6 r6 r 7 r_7 r7
概率 P P P0.150.160.100.070.140.040.110.23

【答】

灰度级 r k r_k rk01234567
概率 P P P0.150.160.100.070.140.040.110.23
原始累积直方图 t k t_k tk0.150.310.410.480.620.660.771.00
s k = int [ 7 × t k + 0.5 ] s_k=\text{int}[7×t_k+0.5] sk=int[7×tk+0.5]12334557
确定映射关系0→11→22→33→34→45→56→57→7
均衡化后的直方图 p s ( s k ) p_s(s_k) ps(sk)00.150.160.170.140.1500.23

3.2 直方图规定化

直方图规定化【冈塞雷斯第四版】

将规定直方图均衡化
G ( z q ) = ( L − 1 ) ∑ i = 0 q p z ( z i ) = s k , q = 0 , 1 , 2 , . . . , L − 1 G(z_q)=(L-1)\sum_{i=0}^qp_z(z_i)=s_k,q=0,1,2,...,L-1 G(zq)=(L1)i=0qpz(zi)=skq=0,1,2,...,L1 p z ( z i ) p_z(z_i) pz(zi)是规定直方图的第 i i i个值。反变换得希望的值 z q = G − 1 ( s k ) z_q=G^{-1}(s_k) zq=G1(sk)这个映射是一一对应的,由于处理的灰度级是整数,计算 G G G值很简单,故实际上不需要求逆。只需要计算出 G G G的值后,将这些值四舍五入得到一个查找表。再从 s k s_k sk中找最接近的值与之匹配即可。

例如:在刚刚直方图均衡化的例子中,我们计算得到了均衡化后的结果

s k s_k sk01234567
p s ( s k ) p_s(s_k) ps(sk)00.1900.2500.210.240.11

我们要将上表直方图规定化。将规定的直方图均衡化

z q z_q zq01234567
p z ( z q ) p_z(z_q) pz(zq)0000.150.200.300.200.15
G ( z q ) G(z_q) G(zq)00012567

对于每个值 s k s_k sk,我们创建从 s s s z z z的映射。对于 s k s_k sk中值为0的映射其实可以不用看,因为没有值可以映射出去,所以我们只观察有值的 s k s_k sk,例如 s 1 = G ( z 3 ) = 1 s_1=G(z_3)=1 s1=G(z3)=1是一个完美匹配,于是 s 1 → z 3 s_1→z_3 s1z3,同理 s 3 与 G ( z 4 ) = 2 最近, s 3 → z 4 s_3与G(z_4)=2最近,s_3→z_4 s3G(z4)=2最近,s3z4 s 5 = G ( z 5 ) = 5 , s 5 → z 5 s_5=G(z_5)=5,s_5→z_5 s5=G(z5)=5s5z5 s 6 = G ( z 6 ) = 6 , s 6 → z 6 s_6=G(z_6)=6,s_6→z_6 s6=G(z6)=6s6z6 s 7 = G ( z 7 ) = 7 , s 7 → z 7 s_7=G(z_7)=7,s_7→z_7 s7=G(z7)=7s7z7得规定化后的直方图为

灰度级01234567
规定化后直方图0000.190.250.210.240.11

上述过程可以用下表简单概括【考试中可只画这个表】

灰度级01234567
原始概率分布0.190.250.210.160.080.060.030.02
原始累积直方图0.190.440.650.810.890.950.981.00
规定直方图概率分布0.000.000.000.150.200.300.200.15
规定累积直方图0.000.000.000.150.350.650.851.00
SML映射34566777
确定映射关系0→31→42→53→64→65→76→77→7
匹配后的直方图0000.190.250.210.240.11

均衡化与规定化的效果对比

图3.23显示了一幅灰度级图像及其直方图。图像中有几个大的暗色区域,使得直方图中大量像素集中在灰度级的底端。黑色背景中的目标不能识别。经过直方图均衡化后,我们就能看见暗色区域中的细节了,如图3.24b所示。但我们可以发现,虽然暗区细节可以看见了,但是图像出现了很多噪声,原因是因为图像中最暗区域的噪声是最大的。为了抑制暗区域的噪声,使用直方图规定化是个很好的选择。

出现大量噪声的原因是因为原图像的直方图暗端分量是非常窄且高的,直接使用直方图均衡化会很迫切的将这个区域的分量扩展的很宽,由于扩展的过于急剧,使原图像直方图的形状发生了很大改变,就将暗区的噪声大量显示了出来。图3.25a是人为规定的函数,保留了原直方图的一般形状,在灰度级的暗色区域中,灰度级的过渡更平滑。图3.25b中的(1)是a的均衡化变换函数,(2)是图3.24a的反变换函数。图3.25c是直方图规定化的结果。对比图3.25c图3.24b可以发现,规定化对直方图均衡化的改进非常明显,暗区域的噪声得到抑制,且黑色背景中的目标也清楚的显露了出来,图像色调更均匀。

2012、2020甄题【计算题】

在这里插入图片描述
在这里插入图片描述

灰度级01234567
F的直方图0.190.250.210.160.080.060.030.02
F的累积直方图0.190.440.650.810.890.950.981.00
G的直方图0.00.00.00.150.20.30.20.15
G的累积直方图0.00.00.00.150.350.650.851.00
SML映射34566777
确定映射关系0→31→42→53→64→65→76→77→7
匹配后的直方图0000.190.250.210.240.11

2014、2021甄题【简答题】

概述直方图均衡化和直方图规定化的区别与联系

  • 联系:都是为了扩展图像灰度级的动态范围,进而增强图像对比度。
  • 区别:直方图均衡化是增强整体图像的对比度。直方图规定化是根据目标直方图的要求,只对图像中的特定区域进行变换,可以有选择性的增强图像中某个范围内的对比度。

习题3.11

在这里插入图片描述
(a)区间 [ 0 , L − 1 ] [0,L-1] [0,L1] 的直方图均衡化变换: s k = T ( r k ) = ( L − 1 ) ∫ 0 r p r ( w ) d w = 2 L − 1 ∫ 0 r w d w = r 2 L − 1 s_k=T(r_k)=(L-1)∫_0^rp_r(w)dw=\frac{2}{L-1}∫_0^rwdw=\frac{r^2}{L-1} sk=T(rk)=(L1)0rpr(w)dw=L120rwdw=L1r2
根据定义,对于 [ 0 , L − 1 ] [0,L-1] [0,L1] 范围之外的值,该变换为 0。将输入的灰度值平方并除以 ( L − 1 ) (L-1) (L1) 将产生一幅灰度值为 s s s的图像, 这幅图像具有均匀的 PDF,因为这是一种直方图均衡化变换。

(b) 我们的兴趣在于规定直方图的图像,因此我们接下来发现
G ( z ) = ( L − 1 ) ∫ 0 z p z ( w ) d w = 3 ( L − 1 ) 2 ∫ 0 r w 2 d w = z 3 ( L − 1 ) 2 G(z)=(L-1)∫_0^zp_z(w)dw=\frac{3}{(L-1)^2}∫_0^rw^2dw=\frac{z^3}{(L-1)^2} G(z)=(L1)0zpz(w)dw=(L1)230rw2dw=(L1)2z3
在区间 [ 0 , L − 1 ] [0,L-1] [0,L1] 上;根据定义,该函数在其他地方为 0。最后,我们要求 G ( z ) = s G(z)=s G(z)=s,但 G ( z ) = z 3 / ( L − 1 ) 2 G(z)=z^3/(L-1)^2 G(z)=z3/(L1)2,因此 z 3 / ( L − 1 ) 2 = s z^3/(L-1) ^2= s z3/(L1)2=s,我们有 z = G − 1 ( s ) = [ ( L − 1 ) 2 s ] 1 / 3 z=G^{-1}(s)=\left[(L-1)^2s\right]^{1/3} z=G1(s)=[(L1)2s]1/3

因此,如果我们将每个直方图均衡化像素乘以 ( L − 1 ) 2 (L-1)^2 (L1)2,并将乘积提高到 1/3 的幂,则图像的灰度 z 在区间 [ 0 , L − 1 ] [0,L-1] [0,L1] 内具有所需的 PDF: p z ( z ) = 3 z 2 / ( L − 1 ) 3 p_z(z)=3z^2/(L-1)^3 pz(z)=3z2/(L1)3

习题3.13

在这里插入图片描述
总成立。
变换(2)是从 s k s_k sk z q z_q zq的映射是根据直方图规定化过程的步骤2和步骤3构造的。在图 3.25(b)中, s k s_k sk 是纵坐标, z q z_q zq 是横坐标。因此,该图是以标准方式显示从 z q z_q zq s k s_k sk 的映射。如果要直观显示根据步骤 2 和步骤 3 构建的从 s k s_k sk z q z_q zq 的变换,则应选择 s k s_k sk 作为横轴, z q z_q zq 作为纵轴。图 3.25(b)只是将两种不同的方向组合成了一幅图。因此,在同一幅图中,这两个函数看起来就像彼此的镜像。

3.3 局部直方图处理

上述讨论都是基于全局性的,全局性方法适合于整体增强,当目的是增强图像中几个小区域的细节时,通常需要设计基于像素邻域的灰度分布变换函数。

图3.26所示,图a中黑色小方块中有重要的小细节,但是这些小细节像素的数量对于计算全局变换的影响可以忽略不计,于是产生了图b的效果,小细节压根没被检测出来,还多了很多无用的噪声。当仅对一个小邻域内的像素进行均衡化处理,并依次将邻域中心一个像素一个像素的移动,重复均衡化的过程(类似于滤波过程),得到图c,发现黑色方格内的小细节显露了出来。

习题3.14

在这里插入图片描述
邻域中第 k k k 级灰度对应的直方图分量值为 p r ( r k ) = n k n , k = 0 , 1 , 2 , . . , L − 1 p_r(r_k)=\frac{n_k}{n},k= 0,1,2,..,L-1 pr(rk)=nnkk=0,1,2,..,L1其中 n k n_k nk 是灰度 r k r_k rk 的像素数, n n n 是邻域中像素的总数, L L L 是可能的灰度级总数。假设将邻域向右移动一个像素(我们假设邻域为矩形),这将删除最左边的一列,并在右边引入新的一列。更新后的直方图变为 p r ′ ( r k ) = 1 n [ n k − n L k + n R k ] p'_r(r_k)=\frac{1}{n}[n_k-n_{L_k}+n_{R_k}] pr(rk)=n1[nknLk+nRk]其中 n L k n_{L_k} nLk r k r_k rk 在左侧列中出现的次数, n R k n_{R_k} nRk 是右侧列中类似的数量。上述等式也可写成 p r ′ ( r k ) = p r ( r k ) + 1 n [ n R k − n L k ] p'_r(r_k)=p_r(r_k)+\frac{1}{n}[n_{R_k}-n_{L_k}] pr(rk)=pr(rk)+n1[nRknLk]同样的概念也适用于其他邻域运动模式 p r ′ ( r k ) = p r ( r k ) + 1 n [ b k − a k ] , k = 0 , 1 , 2 , . . . , L − 1 p'_r(r_k)=p_r(r_k)+\frac{1}{n}[b_k-a_k],k=0,1,2,...,L-1 pr(rk)=pr(rk)+n1[bkak]k=0,1,2,...,L1 k = 0 , 1 , 2 , . . . , K − 1 k=0,1,2,...,K-1 k=0,1,2,...,K1,其中 a k a_k ak 是移动删除的邻域中值 r k r_k rk 的像素数量, b k b_k bk 是移动引入的相应数量。

3.4 使用直方图统计量增强图像

直接从图像直方图得到的统计量信息可用于增强图像。常用均值和方差增强图像。均值是平均灰度的测度,方差是对比度的测度。使用局部均值和方差处理图像有个重要优点就是能根据图像外观紧密相关的统计测度开发出简单且强大的增强规则。

要在图像的几个暗色区域中增强低对比度细节,同时保持亮度背景不变,就可以采用局部直方图统计量的增强方法。具体操作可用公式3.29完成,其中, f ( x , y ) f(x,y) f(x,y)是图像在任何图像坐标 ( x , y ) (x,y) (x,y)处的值, g ( x , y ) g(x,y) g(x,y)是增强后的图像在这些坐标处的对应值。

图3.27所示,我们关注的细节在比平均灰度的1/4更暗的区域,细节的对比度也较低,那么可以令 k 0 = 0 , k 1 = 0.25 , k 2 = 0 , k 3 = 0.1 k_{0}=0,k_{1}=0.25,k_{2}=0,k_{3}=0.1 k0=0,k1=0.25,k2=0,k3=0.1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果子当夜宵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值