递归问题之兔生兔(详细解析递归思路)

题目解析

题目:有一对兔子,从出生后第4个月起每个月都生一对兔子,小兔子长到第4个月后每个月又生一对兔子,假如兔子都不死,问某个月后的兔子总数为多少对?

我先统计一下8个月内兔子的情况,一个月是小兔,两个月中兔,三个月大兔,四个月成兔(开始生兔子),情况如下表:

月份 总数
1 1 0 0 0 1
2 0 1 0 0 1
3 0 0 1 0 1
4 1 0 0 1 2
5 1 1 0 1 3
6 1 1 1 1 4
7 2 1 1 2 6
8 3 2 1 3 9

在写这个递归之前我并没有上网看思路、看代码,而是自己想了半小时吧,然后写出来了,不是很熟递归。。见谅

递归思路

公式化的递归公式很容易搜到。
比如三个月生一对就是F(n)=F(n-1)+F(n-2)
四个月生一对就是F(n)=F(n-1)+F(n-3)

但是,知道公式,我们更应该知道为什么?

从汉诺塔递归公式中我明白递归的函数之间其实就是各管各的,每个多胞胎兄弟们都把自己的事情做好,那么整件事也就全做好了。

在这个问题中有两个双胞胎兄弟

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值