区间动态规划

        区间动态规划,又称合并类动态规划,顾名思义,区间动态规划的题目一般来说是在操作每一个区间,(例如将两堆石子合并在一起,获得的价值是两堆石子的总价值)并获得相应的价值。当然,与线形动态规划有所不同的是,它要操作的子区间是要选择最优的。这时,我们就不能套用类似于线形动态规划的方程了,于是,便引出了区间动态规划。

区间动态规划有属于自己的一类方程:

for(int t = 1; t <= n; t++){//区间长度
    for(int i = 1; i <= n - t; i++){//枚举区间起始位置(l) 
		int j = i + t;//该区间所能走到的最远点(r) 
		f2[i][j] = 0x3f3f3f3f;
		f1[i][j] = 0;
		for(int k = i; k <= j - 1; k++){//枚举区间中间点
			f1[i][j] = max(f[i][j], f[i][k] + f[k+1][j] + val[i-j]);
			f2[i][j] = min(m[i][j], m[i][k] + m[k+1][j] + val[i-j]);
            //区间[i,j]由两个区间[i,k] 和 [k + 1,j]的值再加上合并这两个区间的附加值加和而成 
		}   
	}	
}

  1. 状态转移方程字面意义:寻找区间dp[i,j]的一种合并方式dp[i,k] + dp[k+1,j],使得其值最大或最小。
  2. 区间长度t必须要放到第一层循环,来保证方程中状态dp[i,k]、dp[k+1,j]值在dp[i,j]之前就已计算出来。
  3. 其中val[i-j]可以不要,也可以灵活多变,指的是合并区间时产生的附加值。

那么,我们很容易看出这类方程的含义:将目前阶段f[i][j]分成两个子阶段f[i][k] 与 f[k+1][j],选择他们两个的和于目前的状态的最优解。

简单的说一下,区间动态规划相当于将一个大的区间分成两个小的子区间,一般可以用循环或者搜索解决。几乎任何一个动态规划方程都需要最初的决策啊。因为要把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解。那么,我们一般要预处理我们的最初的决策(不同题目不同的最初的决策)

下面看一道裸的区间dp题

石子合并

直接上代码:

#include<iostream>
#include<cstdio>
using namespace std;
const int MAX_N = 105;
int a[MAX_N << 1],sum[MAX_N << 1],f[MAX_N << 1][MAX_N << 1],m[MAX_N << 1][MAX_N << 1];
int main(){
    int n,ans = 0, ans2 = 0x3f3f3f3f;
    cin >> n;
    for(int i = 1; i <= n; i++){
        scanf("%d",&a[i]);
        a[i + n] = a[i];
    }
    for(int i = 1; i <= 2 * n; i++){
        sum[i] = sum[i-1] + a[i];//前缀和 
        m[i][i] = 0;
        f[i][i] = 0;
    }
    for(int t = 1; t <= n; t++){//需要的区间长度 
        for(int i = 1; i <= 2 * n - t; i++){//枚举区间起始位置(l) 
            int j = i + t;//该区间所能走到的最远点(r) 
            m[i][j] = 0x3f3f3f3f;
            f[i][j] = 0;
            for(int k = i; k <= j - 1; k++){//枚举区间中间点 
                f[i][j] = max(f[i][j], f[i][k] + f[k+1][j] + sum[j] - sum[i-1]);
                m[i][j] = min(m[i][j], m[i][k] + m[k+1][j] + sum[j] - sum[i-1]);
                //区间[i,j]由两个区间[i,k] 和 [k + 1,j]的值再加上合并这两个区间的附加值加和而成 
            }
        }
    }
    for(int i = 1; i <= n; i++) {//区间dp完成后,枚举长度为n的区间的最值 
        ans = max(ans, f[i][i + n - 1]);
        ans2 = min(ans2,m[i][i + n - 1]);
    }
    cout << ans2 << endl << ans; 
    return 0; 
}

还有一题:

能量项链

直接上代码:

#include<iostream>
#include<cstdio>
using namespace std;
const int MAX_N = 105;
int head[MAX_N << 1],tail[MAX_N << 1],f[MAX_N << 1][MAX_N << 1];
int main(){
    int n,ans = 0;
    cin >> n;
    for(int i = 1; i <= n; i++){
        scanf("%d",&head[i]);
        head[i + n] = head[i];
    }
    for(int i = 1; i <= 2 * n - 1; i++){
        tail[i] = head[i+1];
    }
    tail[2 * n] = head[1];
    tail[n] = head[1];
    for(int t = 1; t <= n; t++){//需要的区间长度
        for(int i = 1;i <= 2 * n - t; i++){//枚举区间起始位置(l) 
            int j = i + t;//该区间所能走到的最远点(r) 
            //cout << i << " " << j << endl; 
            for(int k = i; k <= j - 1; k++){//枚举区间中间点 
                f[i][j] = max(f[i][j], f[i][k] + f[k+1][j] + head[i] * tail[k] * tail[j]);
                //区间[i,j]由两个区间[i,k] 和 [k + 1,j]的值再加上合并这两个区间的能量加和而成 
                ans = max(ans,f[i][j]);//找出枚举的区间最大值(最大值一定是1~n全选了) 
            }
        }
    }
    cout << ans << endl; 
    return 0; 
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值