因为有监督的机器学习一般是,给定输入x,选择一个模型f作为函数,有f(x)预测出。要得到f的参数
,需要定义一个损失函数,来判断预测值
与实际值y之间的接近程度。
模型学习的过程是求使得loss函数L(f(x),y)最小的参数,这是一个优化问题,一般采用和梯度相关的最优化方法,如梯度下降。
一、矩阵迹的定义
矩阵的迹 :就是矩阵的主对角线上所有元素的和。
1.矩阵A(n*n)的迹:
2.矩阵A(m*n)B(n*m)的迹:
二、F范数
1.矩阵F范数公式:
2.用迹来表示:
三、矩阵迹的运算
1.性质1:矩阵A的迹和其转置的迹相等
2.性质2:矩阵AB的迹和矩阵BA的迹相等
3.性质3:若a为一个实数
4.性质4:矩阵求和的迹和矩阵的迹的和相等
四、矩阵迹的求导公式
1.公式1:
2.公式2:
3.公式3:
4.公式4:
5.公式5:
6.公式6: