【刷题总结】二叉树前中后序遍历

1.二叉树前中后序遍历简介

前序遍历:先访问根节点,再访问左节点,最后访问右节点
中序遍历:先访问左节点,再访问根节点,最后访问右节点
后续遍历:先访问左节点,再访问右节点,最后访问根节点

2.递归的方法去实现

深度搜索二叉树的方法:先遍历左子树再遍历右子树

void dfs(TreeNode* root)
 {
        if(root->left)
        dfs(root->left);
        if(root->right)
        dfs(root->right);
  }

那么遍历的顺序确定了,每种遍历方式其实就是访问的位置在哪了(我们只需要关系根节点的访问顺序)
前序遍历:先访问根节点,所以在遍历前访问即可:

void dfs(TreeNode* root)
 {
        cout<<root->val<<endl;//访问
        if(root->left)
        dfs(root->left);
        if(root->right)
        dfs(root->right);
 }

中序遍历:先访问左节点,所以在左节点遍历后访问即可:

void dfs(TreeNode* root)
 {
        if(root->left)
        dfs(root->left); 
		cout<<root->val<<endl;//访问
        if(root->right)
        dfs(root->right);
 }

后序遍历:先访问左节点,再访问右节点,所以在左右节点遍历后访问即可

void dfs(TreeNode* root)
{
        if(root->left)
        dfs(root->left);
        if(root->right)
        dfs(root->right);
		cout<<root->val<<endl;//访问
}

3.递推的方式去实现

其实一般用递归写的都能递推去实现;
递推的话就用栈去模拟函数开辟子函数的过程,只有当子函数全部执行结束,父函数才会继续执行;这符合栈的后进先出的道理。那么我们将进栈当作遍历左右子树的过程,再确定访问顺序即可。
栈用来存储根节点和左节点。
前序遍历:先访问根节点,再访问左节点,所以在遍历前访问即可;用递推的话就是在其进栈前访问

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> nums;
        stack<TreeNode*> s;
        while(root||!s.empty())
        {
            if(!root)
            {
                root=s.top();
                s.pop();
                root=root->right;//遍历右子树
            }
            else
            {
                while(root)
                {
                    nums.push_back(root->val);//访问
                    s.push(root);
                    root=root->left;//遍历左子树
                }
            }
        }
        return nums;
    }
};

中序遍历:先访问左节点,再访问根节点,所以在左节点遍历后访问即可;用递推的话就是出栈时访问

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
         vector<int> nums;
        stack<TreeNode*> s;
        while(root||!s.empty())
        {
            if(!root)
            {
                root=s.top();
                s.pop();
                nums.push_back(root->val);
                root=root->right;
            }
            else
            {
                while(root)
                { 
                    s.push(root);
                    root=root->left;
                }
            }
        }
        return nums;
    }
};

后序遍历:先访问左节点,再访问右节点,所以在左右节点遍历后访问即可;递推就要为其加一个判断条件,判断其右节点是否访问过,记录上一个访问节点即可(该节点的上一个访问节点必然是其右节点(存在,不存在就是NULL));

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
       vector<int> nums;
        stack<TreeNode*> s;
        TreeNode *pre=nullptr;//记录上一个访问的节点
        while(root||!s.empty())
        {
            if(!root)
            {
                root=s.top();
                s.pop(); 
                if(!root->right||root->right==pre)//没有右节点或者右节点访问过
                {
                    nums.push_back(root->val);
                    pre=root;
                    root=nullptr;
                }
                else
                {
                    s.push(root);//右节点没访问回到栈中
                    root=root->right;
                }
            }
            else
            {
                while(root)
                { 
                    s.push(root);
                    root=root->left; 
                }
            }
        }
        return nums;
    }
};

4.练手题目(leetcode)

144. 二叉树的前序遍历
94. 二叉树的中序遍历
145. 二叉树的后序遍历

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值