import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten
from torch.utils.tensorboard import SummaryWriter
class Zkl(nn.Module):
def __init__(self):
super(Zkl, self).__init__()
# self.conv1 = Conv2d(3,32,5,padding=2)
# self.maxpool1 = MaxPool2d(2)
# self.conv2 = Conv2d(32,32,5,padding=2)
# self.maxpool2 = MaxPool2d(2)
# self.conv3 = Conv2d(32,64,5,padding=2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# self.linear1 = Linear(1024,64)
# self.linear2 = Linear(64,10)
self.modle1 = nn.Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64,10)
)
def forward(self,x):
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
x = self.modle1(x)
return x
zkl = Zkl()
#print(zkl)
# 以下是为了测试一下构建的网络是否正确
input = torch.ones((64,3,32,32))
output = zkl(input)
print(output.shape)
writer = SummaryWriter('sequential_log')
writer.add_graph(zkl,input)
writer.close()