哈希映射类题目(简单题小试牛刀啦)
242. 有效的字母异位词
用python的Counter类太绝了!!!
一行代码解决问题,这道题实际上就是比较两个字符串的每个字母数是不是一样。
在刷题之路1的最后我列出了collections模块的几个字典的子类
Counter:字典的子类,提供了哈希对象的计数功能
class Solution:
def isAnagram(self, s: str, t: str) -> bool:
return Counter(s)==Counter(t)
349. 两个数组的交集
思路:
1.先把nums1和nums2转为集合
2.两集合求交集
3.再把交集转化为list
class Solution(object):
def intersection(self, nums1, nums2):
return list(set(nums1) & set(nums2))
1002. 查找常用字符
给你一个字符串数组 words ,请你找出所有在 words 的每个字符串中都出现的共用字符( 包括重复字符),并以数组形式返回。你可以按任意顺序 返回答案。
题解
利用python内置模块一行代码解决问题:求每个计数器的交集即可
解释:
-
Counter类
Counter类基于dict字典类,可使用dict的方法,其实例可以进行 与 或 非 异或 运算。 -
map
map(function, iterable, …):会根据提供的函数对指定序列做映射。第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。 -
reduce
reduce(function, iterable[, initializer]):对迭代器内进行两个元素操作并传递。
求每个计数器的交集即可,而这个交集必须与其后的交集传递下去,因此 reduce 函数满足。即这里求两个 Counter 计数器的交集操作,然后作为参数 x 传递到下一个去和 iterable 下一个计数器取交集。由于 reduce 最后运算得到的是 Counter 对象,因此取出元素 Counter.elements() 是迭代器,因而 list 创建列表。
class Solution:
def commonChars(self, A: List[str]) -> List[str]:
return reduce(lambda x, y: x&y, map(Counter, A)).elements()
# 使用 lambda 匿名函数
代码详细展开如下:
class Solution:
def commonChars(self, A: List[str]) -> List[str]:
from collections import Counter
ans = Counter(A[0])
for i in A[1:]:
ans &= Counter(i)
return list(ans.elements())
202. 快乐数
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
题解
方法一:哈希集合检测循环
我们可以先举几个例子,找出快乐数的规律,发现有三种可能性:
- 最终会得到 1。
- 最终会进入一个循环。
- 值会越来越大,最后接近无穷大。(但经过验证不存在)
所以要么是快乐数,要么会进入一个循环。
思路:
算法分为两部分,我们需要设计和编写代码。
- 给一个数字 nn,它的下一个数字是什么?
- 按照一系列的数字来判断我们是否进入了一个循环。
实现:
第 1 部分我们按照题目的要求做数位分离,求平方和。
第 2 部分可以使用哈希集合完成。每次生成链中的下一个数字时,我们都会检查它是否已经在哈希集合中。
- 如果它不在哈希集合中,我们应该添加它。
- 如果它在哈希集合中,这意味着我们处于一个循环中,因此直接返回 false。
(注!我们使用哈希集合而不是向量、列表或数组的原因是因为我们反复检查其中是否存在某数字。检查数字是否在哈希集合中需要 O(1) 的时间,而对于其他数据结构,则需要 O(n) 的时间。选择正确的数据结构是解决这些问题的关键部分。)
函数divmod(dividend, divisor)是Python的内置函数,它可以把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a / b, a % b)。
def isHappy(self, n: int) -> bool:
def get_next(n):
total_sum = 0
while n > 0:
n, digit = divmod(n, 10)
total_sum += digit ** 2
return total_sum
seen = set()
while n != 1 and n not in seen:
seen.add(n)
n = get_next(n)
return n == 1
复杂度分析
时间复杂度:时间复杂度:O(243⋅3+logn+loglogn+logloglogn)… = O(logn)。
空间复杂度:O(\log n)O(logn)。
方法二:快慢指针法
通过反复调用 getNext(n) 得到的链是一个隐式的链表。隐式意味着我们没有实际的链表节点和指针,但数据仍然形成链表结构。起始数字是链表的头 “节点”,链中的所有其他数字都是节点。next 指针是通过调用 getNext(n) 函数获得。
意识到我们实际有个链表,那么这个问题就可以转换为检测一个链表是否有环。因此我们在这里可以使用弗洛伊德循环查找算法。
这个算法是两个奔跑选手,一个跑的快,一个跑得慢。在龟兔赛跑的寓言中,跑的慢的称为 “乌龟”,跑得快的称为 “兔子”。如果有环的话,不管乌龟和兔子在循环中从哪里开始,它们最终都会相遇。这是因为兔子每走一步就向乌龟靠近一个节点(在它们的移动方向上)。
算法
我们不是只跟踪链表中的一个值,而是跟踪两个值,称为快跑者和慢跑者。在算法的每一步中,慢速在链表中前进 1 个节点,快跑者前进 2 个节点(对 getNext(n) 函数的嵌套调用)。
- 如果 n 是一个快乐数,即没有循环,那么快跑者最终会比慢跑者先到达数字 1。
- 如果 n 不是一个快乐的数字,那么最终快跑者和慢跑者将在同一个数字上相遇。
def isHappy(self, n: int) -> bool:
def get_next(number):
total_sum = 0
while number > 0:
number, digit = divmod(number, 10)
total_sum += digit ** 2
return total_sum
slow_runner = n
fast_runner = get_next(n)
while fast_runner != 1 and slow_runner != fast_runner:
slow_runner = get_next(slow_runner)
fast_runner = get_next(get_next(fast_runner))
return fast_runner == 1
时间复杂度:O(logn)
空间复杂度:O(1),对于这种方法,我们不需要哈希集来检测循环。
383. 赎金信
为了不在赎金信中暴露字迹,从杂志上搜索各个需要的字母,组成单词来表达意思。
给你一个赎金信 (ransomNote) 字符串和一个杂志(magazine)字符串,判断 ransomNote 能不能由 magazines 里面的字符构成。如果可以构成,返回 true ;否则返回 false 。
magazine 中的每个字符只能在 ransomNote 中使用一次。
题解
使用Counter类的交集操作,获得交集,判断两者交集是否等于ransomNote,是则满足,否则不满足。(Counter yyds!)
class Solution:
def canConstruct(self, ransomNote: str, magazine: str) -> bool:
a = Counter(ransomNote)
b = Counter(magazine)
return (a & b) == a
用内存换时间!!!
总结
python的哈希类题目,可以多多考虑collections模块下的counter子类,counter提供了哈希对象的计数功能